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Critical Casimir force and its fluctuations in lattice spin models: Exact and Monte Carlo results
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We present general arguments and construct a stress tensor operator for finite lattice spin models. The
average value of this operator gives the Casimir force of the system close to the bulk critical temggrature
We verify our arguments via exact results for the force in the two-dimensional Ising ntbdehensional
Gaussian, and mean spherical model wita @<4. On the basis of these exact results and by Monte Carlo
simulations for three-dimensional IsingsY, and Heisenberg models we demonstrate that the standard
deviation of the Casimir force=c in a slab geometry confining a critical substance in-between is
k,TD(T)(A/a% 112 whereA is the surface area of the platesis the lattice spacing, anB(T) is a slowly
varying nonuniversal function of the temperatdrerhe numerical calculations demonstrate that at the critical
temperatureT, the force possesses a Gaussian distribution centered at the mean value of thé§rce
=k, T(d-1)A/(L/a)%, whereL is the distance between the plates @nib the (universaj Casimir amplitude.
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l. INTRODUCTION dfo(T,L,)
BFcasimil T, L) = = —= ===, (1.

. . . . , . aL,

If material bodies are immersed in a fluctuating medium

the surfaces of these bodies impose boundary conditions thatheref.(T,L ) is the excess free energy

select a certain mode spectrum for the fluctuations. This

leads to a contribution into the ground state energy of a fexdT,L ) =f(T,L,) =L fpui(T) (1.2

quantum mechanical system, or to the free energy of a criti- . .

cal statistical-mechanical system, which depends on the gecS)—f the systemaHeré(T, LL_)l_ IS t:fe fuI!rfrge henergy per ug't

metrical parameters characterizing the mutual position of th&¢& measured in units kET andfy,(T) is the correspond-

bodies and their shape. This is known as the Casimir effedf'd Pulk free energy density.
[1-3. According to the definition given by E@l.1) the thermo-

the Casimir efdynamic Casimir force is a generalized force conjugate to the

fect is a phenomenon common to all systems characterized{StanceL . between the boundaries of the system with the
by fluctuating quantities on which external boundary condi-PrOPertYFcasmfT,L)—0 forL, — . We are interested in
tions are imposed. Casimir forces arise from an interactioth® behavior ofFcasimi; when L, >a, wherea is a typical
between distant portions of the system mediated by fluctuglicroscopic length scale. In this limit finite-size scaling
tions. theory is applicable. Then one hgkl]

In quantum mechanics one usually considers fluctuations "
of theqelectromagnetic field. In this case correlations of the BFcasimiT,L 1) = L Xeasimil L/ €-), (1.3
fluctuations are mediated by photons—massless excitationghere¢, is the true bulk correlation length, Whi¥easimi iS
of the electromagnetic field.,2,4,3. In statistical mechanics 3 unijversal scaling function.
the massless excitations can be generated by critical fluctua- At the critical pointT, of the bulk system one has =,
tions of the order parameter around the critical temperaturgnd[3]
T. of the system[3,6,7]. Goldstone modesgor spin wave

According to our present understanding,

excitationg in O(n) models at temperatures beloly also _ A

provide massless excitatiof-10. Fluctuations of this type BeFcasimif Te,L 1) = (d = DE’ (1.4
are scale invariant and therefore the Casimir force is long

ranged in the above cases. whereA is the so-called Casimir amplitude. This amplitude

In this paper we discuss the behavior of the thermodyis universal, i.e.A depends only on the universality class of
namic Casimir force in systems with short-ranged interacthe corresponding bulk system and the type of boundary con-
tions undergoing a second-order phase transition. ditions used acrossL,. Obviously, one has A

To be more specific, let us consider a statistical-=Xcasimi(0)/(d—1).
mechanical system, a magnet or a fluid, with the slab geom- The Casimir force may also be viewed from the point of
etry Lﬁ'lx L,, whered is the dimensionality of the system view of conformal invariance of, e.g., critical systeffii].
and periodic boundary conditions are applied. In the limitThe Casimir force in its simple form for the film geometry
L,—o (L, fixed) the Casimir force per unit area is defined (L,—, L, finite) is due to theL, dependence of the free
as energyf(T,L,) per unit area. The free energy therefore re-
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sponds to any coordinate transformation which changes thier the two-dimensional Ising mode{see Sec. Il A,
value ofL ;. On the other hand, any coordinate transforma-d-dimensional Gaussian mod@ee Sec. Ill ¢, and for the
tion which transforms a slab of thickneks into a slab of a mean spherical model with<2d<4 (see Sec. Ill B. Monte
different thickness is nonconformal. Therefore, the CasimirCarlo results, based on our definition, are given in Sec. IV
force is the response of the free enefdy,L ,) of the origi-  for the behavior of the force and its variance. There the
nal slab to a nonconformal coordinate transformation. Théhree-dimensional IsingSec. IV A), XY (Sec. IV B), and
change of the free energy due to a nonconformal coordinateleisenberg(Sec. IV Q models have been considered. The
transformation is determined by the thermal average of th@aper closes with a discussion given in Sec. V. The set of
stress tensot,; associated with the Hamiltonian of the sys- technical details needed in the main text is organized in a
tem [12]. If the coordinate perpendicular to the surfaces ofseries of Appendixes.

the slab is denoted bg; it is easy to prove that the Casimir

force in the slab is given by the thermal average of the stress; e STRESS TENSOR FOR LATTICE SPIN MODELS
tensor componertt, [12] (see below.

Normally, one is interested ift,,), which determines the We will now reconsider the Casimir force for a
(average value of the Casimir force. In addition, one can d-dimensional anisotropic lattic®(N) spin system with the
consider any realizatioty, of the stress tensor to be propor- Hamiltonian(see also Ref[13])
tional to any realization, e.g., instantaneous value of the Ca-
simir force F¢, where(F¢)=Fcasime That is the approach
undertaken recently by Bartolo, Ajdari, Fournier, and Goles-
tenian[13]. They consider a statistical-mechanical model of
a d-dimensional medium described by a scalar fi@dvith  where ad-dimensional simple hypercubic lattice wh‘_tﬁ"l
an elastic energy density proportional®®)?, i.e., one con- XL, lattice sites and;>L, is assumed. The vect® in-
siders an elastic Hamiltonian of the form dicates a lattice site and the Vectelgsk=1,2, . d connect
nearest-neighbor lattice sites on the simple hypercubic lat-
tice. The spinsS; are considered to be @(N) type. Fol-
lowing Ref.[14] and the general idea of conformal field

) ~_ theory[12], we define the coupling constants in E§.1) by
whereR=(r,2). They assume that the plates impose Dirich-

d
GUSEERDIDINVINESS I (2.

R k=1

Hiw)=4 [ eRiFor)a, 15

let boundary conditions, i.e®(r,0)=®(r,L,)=0. JN) =3\ =J€Y), k=1,...d-1,
For the total Casimir forcE=L"'F it has been found
that Jg(N) =3, (\) = J(e7 @), (2.2
d 1
(FYy = - c(d) = o(d)— A (1.6) which means thax =0 marks the isotropic point of E@2.1)
Fasimi= BLd pLY’ due t0J,(0)=J,(0)=J(1). The functionJ(x) in Eq. (2.2 is

a2 supposed to be smooth and monotonic in the vicinityx of
where c(d)=(d—-1)I'(d/2){(d)/(4m)** depends only on the =1 but is otherwise arbitrary. The critical point of the bulk

spatial dimensiord, while the variance of the forc(sAF )? spin model defined by E@2.1) is given by an implicit equa-
that can be considered as being producedl\lgrﬁ(L”/a)d Y lion of the type

independent strings is
L\ 1 A K(BeIi(N), ... B Ig-1(N), BeJa(N))
2
(AFg)? = ﬁz( ) SRt 1.7 = KBV, ... BN B, ) =1, (2.3

In the above expressioms= L is the cross section of the Where B.=1/(kgT¢). The function K(uy, ... Ug-1,Ug) is @
system. From Eqgs(1.6) and (1.7) one obtains that the smooth function ofd variablesu,, ... ,uy. Furthermore, at

“noise-over-signal ratio’p is K(uq, ...,ug)=1 the functionk is invariant with respect to
any permutation of its arguments, because the location of the
_ AR L_L)(d_l)lz(L_L (@+1)72 1g Critical point is independent of the labeling of the lattice
(|: ) L, a ’ (1.8 axes. This also implies that the derivativedC/du,, k
=1,...d for £=1 all have the same valug’ #0 at the
The probability distribution of the force has been found to bejsotropic point u;=u,=---=uy. For the two-dimensional
Gaussian, i.e., Ising model the functiork is rigorously known[15]:
PFL=x) = — 1 exp{ (x-(F¢ >2)2]_ (1.9 K(ug, Up) = sinh(2uy)sinh(2uy), (2.4)
\"ZWAFIC Z(AF )

but ford=3 exact results fok are extremely rare. From Eq.

The structure of the current paper is as follows: First, in(2.3) one immediately concludes that in general the critical
Sec. Il we present some general arguments and constructt@mperaturel, will depend on the anisotropy parameter
stress tensor operator for finitattice spin models. Then, in  However, for the particular parametrization given by Eg.
Sec. lll, we verify our arguments by presenting exact result§2.2) one finds at the critical pointsee also Ref[14])
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fex(t,L) = L1 Vg [t(L /€, 0] (2.10

of the excess free enerdy,(t,L,) in the limit L,— o, we
+ B(0K'[(d-1)J/(0) + I (0)] obtain an expression of the Casimir force which is derived in
o , detail in Appendixes A and B. From E¢B8) derived in
= B(OXdID), 2.9 Appendix B the operator form of the stress tensor component
t,  (R) can be read off as

dKc
0= N = BLU0)K'[(d - 1)J,(0) + I, (0)]
=0

which immediately yield$3,(0)=0, i.e., for an infinitesimal

anisotropy(A <1) the value of the critical temperature re- d-1

mg:jnesl unchanged and is given by its value for the isotropic t, (R =Y (V[R (0] D SxSkre, - (d- 1)3?3%%]
. k=1

The correlation length of the anisotropic bulk spin system

defined by Eqs(2.1) and(2.2) will also be anisotropic. In the + i(ﬂ _ 7:fb)[,3 (0) - ] (2.11)
vicinity of the (isotropio bulk critical temperaturel. one dv ¢ ’
finds

where Eq.(B9) was used and the operatcks and H,, are
EEND =M™ and £ ND =€ oML, properly normalized Hamiltonian((0) [see Eq.(2.1) and
(2.6) Appendix B].

Equation (2.11) provides the connection between the
wheret=(T-T,)/T, is the reduced temperature ands the  stress tensor componetit, parallel to the surfaces of the
correlation length exponent which is universal, i.e., indepenslab and the spin lattice model given by ER.1). It is valid
dent of the anisotropy parameter At the isotropic point\  also for temperatures> T, and thus generalizes E(6) of
=0 one hag o(0)=¢, ¢(0)=&,. To simplify the notation we  Ref.[14]. For T<T; Eq.(2.1]) holds also folO(N) symmet-
ignore the fact that the correlation length amplitudes in gen¥ic spin models, because the correlation length rafic
eral also depend on the sign of the reduced temperatwe  remains finite aff=T; and it can be continued analytically

therefore assume that-0 in the following. into the Goldstone regime, where it can be used for the an-
In order to be able to apply finite-size scaling in the criti- isotropic rescaling of the coordinates according to @&d7).
cal regime with respect tosinglecorrelation length, say;,,  Finally, we note that Eq(2.11) only holds for periodic
we employ the following anisotropic rescaling of the spatialboundary conditions.
coordinates: For the purposes of this investigation Eg.11) serves as
a prescription to obtain the universal scaling function of the
, , &oN) Casimir force in critical slabs with periodic boundary condi-
X =X, k=1,...d-1, and xj= £ O(A)Xd' tions by Monte Carlo simulations. However, E.11) con-

tains the raticg o(\)/ &, o(\) of the correlation length ampli-
2.7 tudes for Eq.(2.1) as a prefactor. For the two-dimensional

This transformation has the desired property, namgly. (2D) Ising model this function is given bj 5]
and¢’ = as can be easily verified from Eq2.6) and(2.7). .
For the lattice size&, andL, we find accordingly G0N _ I + HN)SINF 26N, ()]

£ o) JV)+I,(N)sinH28.0)3(V)]
_ &N

Li=L, and L= : (}\)LL =R\L,. (2.8  and by virtue of Eq(2.2), Eq. (2.11) can be made explicit.
1.0 But in d=3 no such information is available. However, in

The link between the explicik dependence of the free en- the critical regime, where Eq2.11) will be applied, the
ergy of our spin system according to E€®.1) and(2.2) and scaling argument., /¢ will typically not exceed values of
the Casimir force defined by Ed1.1) is provided by Eq. the order of 10. This means that we will be q?/allng with
(2.8). In the limit L, — we find (see also Eq¢24) and(33 ~ 'eéduced temperatures in the range<10(L,/&)™" i.e.,

(2.12

of Ref. [14]) the relevant temperature range diminishes as the system
sizeL , increases. As can be seen explicitly in Ef.12)
dfey . B the correlation length amplitude ratio only depends on the
N x:o__LIHIan Lﬁ‘l temperaturel and doesnot display any scaling behavior.

Therefore, the generally unknown prefactor in Efj11) can
d-1 be treated as a constant for sufficiently large system sizes
> SRSR%]K—(d—1)SRSR+ed , which can be determined by a normalization (of |) to
k=1 known results af =T, [6].

(2.9 We end this section with some observations that turn out

to be very helpful for analytical calculations of the variance

where(: --) denotes the thermal average with respect to thef the force. Since they are model independent we give them
Hamiltonian given by Eq(2.1) at the isotropic poinh=0.  before passing to explicit calculations presented in the fol-
From Egs.(1.1) and(2.9) and the finite-size scaling form lowing section. Let us consider an anisotropic Hamiltonian

x\ 2

R
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of the type given by Eq(2.1), where J;(\)=---=J4_1(\)
=J(\)=(1+N)J andJg(A\)=J, (\)=[1-(d-1A]J. Then, itis
easy to see that

HO)=H(0) -2 (:Zisst—(d—l)s?std :
_ (2.13
or, equivalently,
(2.19

BH(\) = BH(0) -2 2T, | (R),
R

where

d-1

T, (R)=8] kESRSR+eK—<d—1)SRsR+ed (2.15
=1

differs only by a multiplying factor from the stress tensor

t, (R) defined in Eq.(2.11).

Let T(T,\) be the total free energy per unit spin of a
system with the Hamiltoniag2.14). Then, taking into ac-
count the translational invariance symmetry, it is easy to see

that

{1 (R) = = = TAHT o= A~ DI(SS) ~ (S8,
(2.16

Therefore, in order to calculate the average valug of(R)

PHYSICAL REVIEW E69, 046119(2004)

1=sinH28.J), (3.2

and the right-hand side of the above equation simplifies es-
sentially becoming simply —12y2). Therefore, atT=T,,
the stress tensor reads

1
tex(i,j) = E(S,;S,m-&jsm), (3.3

which is exactly the form considered in REE4]. In the limit
M — o at the critical poinfT;, of the bulk system one h4&4]

<tx,x> == zCL_Z!

6 (3.9

where c=1/2 is theso-called central charge of the Ising
model[12]. The Casimir amplitude ig12]

(3.5

It is easy to see that close W the right-hand side of Eq.
(3.1) becomes

1 —
——~<1+ﬁTﬂ°)+0((ﬁ—ﬁc>2).

3.6
5 : (3.6

Sincev=1 for 2D Ising model, it is clear from Eq3.4) that
the contributions to the Casimir force due to the term pro-
portional to 8- in the above expression will be of the
order ofL™3. Such contributions will be neglected. Therefore,
in the critical region of the finite system we conclude that the
stress tensor is given by

one needs either to know the finite-size free energy density

of an anisotropic system, or, what is much simpler, the
nearest-neighbor two-point correlations along the axes of the

isotropic finite system.

Ill. ANALYTICAL RESULTS

1 1 A~ A
tix(i,j) = E(S,JS,M =5,8u) + 5B~ A(H ~Hy).
(3.7

One can interpret the variance of the stress tensor
Aty (i ,]) as a variance of a local measurement of the Casimir

In this section we summarize our analytical results for theforce made near the poifit,j). For the leading behavior of

two-dimensional Ising, for the spherical model

spherical model is given in Appendix D.

A. Two-dimensional Ising model

For the two-dimensional Ising model on a square lattice

with the variance af; one then hagsee Eq(C6)]
2<d<4, and for the Gaussian model. Their derivation for
the Ising model is given in Appendix C, while ones for the

Ateyij) =1 - 2/, (3.9

Definitely, in addition from the above nonuniversal part the
variance contains also universal parts that are negligible in
comparison with the nonuniversal one.

As we said above, we will interprét,,(i,j)) as a local

with geometryL X M the lattice representation of the stress Measurement of the Casimir force made near the foift

tensor is well known for a long timgl4,14. In our nota-
tions, using Eqgs(2.11) and(2.12), we obtain

, d{ &N ) ]_1
Al (1){ d)\(&,o(h) A=0

_ BI1+sinh(2BI)]
~ 2[sinh(2BJ) - 28J cosh2BJ) - 1]’

(3.9

At the critical pointg. of the isotropic system one ha$5]

Let us imagine that we are collecting measurements from all
the points belonging to the “surfacét ,j), j e[1,... ,M] (in

the very same way one can consider the opposite “surface”
(L,j), jell,... M]). The surfaces are important because
they are the only place where in an experiment the Casimir
force is experimentally accessible. To characterize the force
measured on the whole surface, insteat} ¢ , j), one has to
considerZ; t,,(1,j). Taking, in a first approximation, any
local measurement to be independent from the other ones,
one obtains that
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AE tx,x(l.j) _ MAtX,X(l,l) ~ 0.363M, (3.9 B. The spherical model
i We consider a spherical model ordalimensional hyper-
cubic lattice A € Z9, where A=L; XL,X--- XLy Let L;

which implies that, indeed, in agreement witt8], =N;a;, i=1, ... d, whereN; is the number of spins ara is
the lattice constant along the axé with e being a unit
(ABFL)2 o N = (L/a)®t, (3.10  vector along that axis. With each lattice sitene associates
a real-valued spin variablg which obey the constraint
whered=2.
An estimation can be also derived faE; ; t,,(i,j). With > (=N, (3.15
a variance of such a type one deals when, say, Monte Carlo red
simulations of the force are performed. One obtdse® Eq.  \yhereN=N;N,...Ny is the total number of spins in the sys-
(C10] tem. The average in E¢3.15 is with respect to the Hamil-

tonian of the model which is

1 2
Aty (i) = —[— —+ —]ML 0.068VIL. (3.11)
i 2 =——,32 SJ(r,rSs. +SE§ (3.16
r, r’
We again observe that the variance of the sum, g , j
proportional to the total number of summands in thls sum. : ,
The coefficient of proportionality for 2D Ising model, when oS(|rr]earre|st‘;1e:?rr1tic;r’ _|2fre|1ctlons dl ?ind\\],\(/(re rt’?ldéro ortrz-
the sum is over all spins in the finite system, turns out to bee wise. P
0.068. . -
Unfortunately, as far as we are aware, the finite-size prop- FO(; such a(;ntodel 'ttr::arf‘ be showm tk;e{thunder perlod![c
erties of the free energy of the two-dimensional anlsotropupoun ary conbl ions, the free energy of the mogelr uni
Ising model under periodic boundary conditions are notSp'n) is given by
available forT # T.. This makes the comparison of the direct
derivation of the force as a derivative of the finite-size scal- Bf(K,N) = 5 In_—-K
ing excess free energy and as average of the opeiatti

In the current paper we will consider only the case

a challenging task. Moreover the behavior of the finite-size 1 (k)
free energy of the isotropic system is only known for mod- +sup) - EKW ﬁ > Injw+1- :
erate values of the scaling argumenis’]. Nevertheless, w=0 keBy J(0)
from Ref.[17] one can extract the following results for the (3.17
scaling functions of the excess free energy and the Casimir
force. while the two-point correlation function is
(a) Excess free energy: The scaling function of the ex- 1 kT
cess free energy ] Grr,KNy=— > ———  (3.18
Nyes, w+ 1 -J(k)/J(0)
Xex:__ -7, (1/2)< ) (1- 2724 4(2i - 1), Here s=K(w+1)/2, K=8J(0), where J(k) is given by the
12 5 2m Fourier transform of the interaction
(3.12 3 =3 ar)ekr, (3.19
r

where -m<x< 2, and the scaling variable is=8K_tL. o
(b) Casimir force: The scaling function of the Casimir and the wave vectdk ={k;,kp, ... Kq} € BA is with compo-

force Xcasimir IS related to that one of the excess free energynentsk; =2mn;/L;, wheren,=1,... N;, i= . d. The equa-
via tion for the spherical fieldv reads
1 1
d — —— =K, 3.20
XCasimir: Xex(X) - Xg(xex(x)- (3-13) Nk eBy W+ 1 —:j(k)/:j(O) ( )

which leads immediately t&(0,t,N)=1.
For nearest-neighbor anisotropic interactions it can be
shown thatisee Eq(D16)]

T o (12
Xcasimir= =~ 1—2 - 71'25 ( i ) g \/‘ \/~ 320

x \2 _
X (—) (1-2)1-22*"YH2i-1). where §; is the correlation length in directiof, and b;
2m =J; /2‘,?_1 J;i, which leads to the following explicit form of the
(3.19 stress tensor within the spherical mofiste Eq(D18)]:

Then, from Eq.3.12), one immediately obtains

046119-5
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d-1
LR)= ] S S ~(0- DiSeg
1 . .
+ (B B~ ). (3.2

Here’H is the Hamiltonian(normalized per unit particjeof
the finite system and{y is that one of the infinite system.

1. Evaluation of the finite-size excess free energy
of the anisotropic system

First, one can demonstrate that the critical coupling of the 2

anisotropic bulk system igsee Eq(D30)]

d - d
Ke=2B:.2 J,=Wy(0b)= | dx] ] e™®ilq(xby).
j:1 0 ]:1
(3.23
Then, close t& =K, when 2<d <4, for the scaling form of
the excesdree energyB(f—f,) (per spin in the limit of a

film geometry N;,N,, ... ,N4_;—0 one obtains[see Eq.
(D39)]

BLF(K.N, |b) = fo(K]b)]

1
= le(y - yoc)
_ EF(_—dIZ) ( b_i> @ 1)/2(yd/2 _ yd/z)
2 (4’7T)d/2 bH *
2 (b_L>(d_l)/2 2 Kd/z(q\'y) N
(2m) ¥\ b -
(3.29
In the above equation
x;=b, (Ke=K)NY",  p=—— (3.2

d-2

is the temperature scaling variable,= 2WbNi/ b, is the so-
lution of the bulk spherical field equatidisee Eq.(D37)]

(22"
b” o0 )

while y:ZWNi/bL is the solution of the finite-size spherical
field equation[see Eq.(D38)]

(d-1)/2
d/2—-
) y 2-1

1 T@A-d2)

-- W (3.26)

X =
21

1 F(l—d/Z)(b_l

- Ex:l - (47T)d/2 bH

Karz- 1(q\’y)
d/2 T

(d-1)/2
ZL d/4 1/22

N 2 (b
(277 d/2 b”
(3.27)

For the Casimir force one derivésee Eq(D40)]

PHYSICAL REVIEW E69, 046119(2004)

1 b (d-1)/2
IBFCasimir: N {_xl(y yoc) (d 1)( b )
l

1I'(-d/2
X [— (iw)d/Z)( a2 _ \di2)
Kan(aVy)
d’42 e } } (3.29
(27T)d/2 pov] d/2

whereas for the Casimir amplitudes we derive[see Eg.
(D44)]

yg/4+1/22 Ka2+1(QV yC)

_d(2 )d/2 qd/2 -1 (3.29

with ,BCFCasimir(KcaLL):(d_l)Ale- The exact value of/,
and A in an explicit form is only known fod=3. Then

ye=4 1IN (1 +5)/2] (3.30
(this value is well known and seems that has been derived for
the first time in Ref[18]), and, then, one obtairf49]

20

A=- )
57

(3.3)

This is the only exactly known Casimir amplitude for a
three-dimensional system.

2. Evaluation of the average value of the stress tensor

For the scaling form of the average value of the stress
tensor one derivesee Eq(D54)]

[ d/42

2(d-1)
(27T)d/2

Kga(a\y)
Tz

<t (R)>— {
+ E K (q Y)
Iy(d 24 d/qzd/12 1\ :|

Ld-2
4d

X (y = ¥..) (N (3.32

It is also possible to demonstrateee Appendix Dthat the
above expression is equivalent BFc.simic given by Eq.
(3.28 for the isotropic systeniwhenb,=b,), i.e., indeed,

<tLL(R)> = ﬂFCasimir (3-33)

for the spherical model.

3. Evaluation of the variance of the stress tensor

For the variance of the Casimir force in the spherical
model atT=T, one obtaingsee Eq(3.34)]

At,  =A 2 tJ_,L(R)
ReA

=0.10MN,N?.  (3.34

This will be also the leading result everywhere in the critical
region, since it is coming from the nonsingular part of the
free energy around =T, an analytical expansion should be
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possible. It is also clear that if the summation o®emn Eqg. y=2wN"/b (3.39
(3.34) is not over the total number of particles Ay which is
NLNﬁH, but over, say, all the spins from one of the bound-\\hare=1/2 andw=p,/8-1.

aries, then the corresponding variance will be proportional to  grom Eq.(3.38), using the property of thi,(x) functions

the total number of spins there, i.e., (20] that
(AIBFEZ)Z & Nﬁ_l = (LH/a)d_l, (333
J
exactly as it has been found in REL3], see Eq(1.7). @[y”KV(ay)] =-ay'’K,-s(ay), (3.40
C. The Gaussian model we immediately derive that the Casimir force in such an

In order to simplify the notations we define the Gaussiar@nisotropic Gaussian model is given by
model in the same way that we have defined the spherical

model. Actually the spherical model is a Gaussian-type ~ 2 (b \@v2z

model with one additional constraint, given by E&.15 BFcasimir= = (2m)92 Fu N

fixing the average length of all the spins in the system. To be . _

more precise, we suppose that the Hamiltontdnof the 3 (d= 1yt Ka2(avy)

model is again given by Eq3.16), where, as befores ( )y ot qi2
=K(1+w)/2 andK=8J(0). The only difference is that now . -

Eq. (3.15 is missing andv is not a quantity whose behavior 4 d/ar1r2 Kaz-1(aVy) (3.4)
has to be derived from it, but a parameter which describes y p q¥21 ) :

the deviation from the critical point, i.ey=(8.—8)/B. As a

result, the free energy density of the model becomes Note that despite the similarities with the spherical model

1l k 1 both the excess free energy and the Casimir force differs
Bf(K,N) = > In2— -K|+U(w,N) - EKW’ (3.36  essentially for the two models. Let us demonstrate that even
™ more explicitly on the example of the Casimir amplitudes

where U(w,N) is given by Eq.(D3), while the two-point We are reminded that in the spherical model they are given,

correlation function is still determined by E€8.18. Then, for 2<<d<4, by Eq.(3.29 wherey, is the solution of the

for a system with anisotropic short-range interaction, pro-SPherical field equation g8=p.. In explicit form we have

ceeding in the same way as in Sec. IIl B, we derive that Eqst_)een able to solve this equation and to calculiatenly for

(D13~(D17) are still valid, wherefrom we conclude that in d=3- The situation with the Gaussian model is much sim-
the Gaussian model the stress tensor again is pler. At the critical pointB8= . one hasy=0, and, therefore,
from Eq. (3.41), or Eq. (3.38, we obtain(in the isotropic

BJ d-1 system
(R =0 kEl SRSk, ~ (A= DSSree,
A= I'(d/2)£(d) (3.42
1 ~ ~ == . .
+ o (Be= B)(H ~Hy), (3.37) G

- So, ford=3 one has\=-¢(3)/2# and, therefore,
whereH is the Hamiltoniannormalized per unit particjeof

. . -~ . . . _ 4 _
the finite andy, of the infinite model. Agpherical modeF £Acaussian model 0=3. (343
1. Evaluation of the finite-size excess free energy
of the anisotropic system 2. Evaluation of the average value of the stress tensor

The analysis qf the excess free energy can be performed Having in mind thatu=(4/98)(Bf) and using Eq(3.40),
along the same lines as in the case of a spherical model. Fs; the difference of the finite-size and bulk internal energy

example, forU(w,N) Egs.(D19)«D23) and(D28) are still  gensities one can easily derive from E¢&.36) and(3.38),
valid. On the basis of these equations we immediately obtain

that in the case of a Gaussian model the excess free energy in
a film geometry is

BLT(K,N L |b) = fi(K[b)]

2 b, \@D2 * Kd/z(qvg’) )

Y & Kap-a(@Vy) | g
Cm¥(B-P e ot
(3.44)

U—up=

wherey=2dwN andw= 3,/ 8-1. Next, from Eq.(3.18), or
Eq. (3.36), for the stress tens@B8.37) of the Gaussian model
In the above equation the temperature scaling variable is we derive that
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d-11 cogk;a,) — cogkgay) gime no special techniques are required. However, as has
t (R)= d N > d become obvious in, e.g., E(B.11), the statistical error of the
keBa d(1+w) - >, cogka) estimate will increase with the system size if the number of
=1 'J Monte Carlo sweeps is kept constant. In order to approach

- - the asymptotic regime larger system sizes, $fy,120 and
_BdB 2 Y412 Ka2-1(aVy) Nd N, =20 lattice sites ird=3 are required which means that a
d/2-1 Lo

d (2m¥? e1 4d reliable estimation of the Casimir force remains computa-
tionally demanding as far as the required CPU time is con-
(3.49 cerned.
where we have taken into account thet1/2. Applying to We employ a hybrid algorithrf21] which consists of Me-
the first row in the above equation the same way of acting a§opolis [22] and single cluster updatg23] for the Ising
in the case of the spherical model, and replagiiggy3 by 1~ model, for XY, and Heisenberg simulations over-relaxation

(since we are close to the critical pointve derive updateq24] are employed as a third update method. Cluster
_ updates are only used in the immediate vicinity of the critical

_ da+1/2 2 Kao-1(any) point, e.g., for —0.0&t=<0.02 for the system size indicated

(t (R)=- d(2m)92 y ~ W above. Typically, we have performed between>B¥ and

1 9.6x 10° Monte Carlo steps per spin. In order to cope with
- K1+d/z(Q\*“§/) » the high demand of CPU time for larger systems we have
+(d- 1)y — a1 (NL- performed part of our simulation in parallel on two-processor
=1 Intel Xeon system and on a four-processor DEC Alpha sys-

(3.46 tem using the OpenMP Standard for SMP programming. A
few runs have also been performed on a two-processor AMD

Now it only remains to show that the right-hand side of theOloteron system

above equation is indeed equal to the right-hand side of Eq. We first investigated the energy dependent contribution

(3.4 (for b, =by), which gives the Casimir force calculated [B.(0)-Bl(u-u,) to Egs.(2.1]) and (B8) by a series of

in a direct manner as a derivative of the finite-size free en-. . - N .
ergy with respect to the size of the system. In order to demSMulations on a cubic geometry 1 =N, =20, ..., 80 in

: ; . order to obtain reliable estimates for the bulk energy density
onstrate this, let us note that, according to the ideitig3), Uy, It turns out that within the range —0=2t<0.2 of reduced

d temperatures, various aspect ratiNg/N, =3,4,6,8, and
Kaz+1(X) = Kgro-1(X) +;Kd/2(X)- (3.47  several system size,=60, ...,120 the energy dependent
contribution[ B.(0) - B](u—u,)/dv is always negligible. As a
Inserting Eq.(3.47 in Eq. (3.46) and comparing the result typical result we obtained that for forces of the order o110

with Eq. (3.41), we conclude that, indeed, with a statistical error in the range #3-10°3, the energy
_ contribution [B.(0)-B8](u-u,)/dv remains in the range
(t1 1 (R)) = BF casimir (3.4 104-10° for all models. The prefactal (1)/R’(0) roughly
for the Gaussian model. evaluates td’(1)/R’(0)=0.3 in all cases. We therefore con-
clude that we can safely ignore the energy contribution to the
3. Evaluation of the variance of the stress tensor Casimir force for our Monte Carlo investigations of the

For the variance of the stress tensor all the equations frorJnsmg’ theXY, and the Heisenberg model in three dimensions.

the corresponding part of Appendix D for the spherical
model are still valid. That is because the leading contribution A. Three-dimensional Ising model

of the variance is stemming from the regular part of the bulk 5 expounded above, we have neglected the energy de-
free energyUy(0|b) [see Eq(D25)] evaluated al=Tc [Se€  handent contribution to EqBS) for our Monte Carlo evalu-
Eg. (D65)]. This observation leads to the conclusion that, as;tions of the scaling functiom,e(x), x=t(L, /)Y of the

in the spherical model case, Casimir force. From extended simulations for various aspect
ratiosN;/N, =3, 4, 6, and 8 we have arrived at the conclu-
sion that corrections t@,.(x) due to finite aspect ratio are
by far negligible within the statistical error foM/N, =6. In
where the summation is over all the spins of the system. fact, our results foN,/N, =4 can hardly be distinguished
from corresponding results for larger aspect ratios. We have
therefore fixed the aspect ratio to the value 6 and performed
simulations forN, =16, 20, 24, and 30. The resulting scal-
The foundation of our Monte Carlo investigations of the ing plot for 6¢(x) is shown in Fig. 1.
critical Casimir force is laid by Eq$2.11) and(B8), respec- For T=T, finite-size scaling works very well, whereas for
tively. Apart from the a priori unknown coefficient T<T, data collapse foN, =30 is not as good. However, the
J'(1)/R'(0) and the bulk energy density, the numerical data collapse improves upon increasing the statistics and so
evaluation of Eq.(2.11) is absolutely straightforward and we have performed 9%10° Monte Carlo steps per lattice
apart from usual algorithmic precautions in the critical re-site for the largest latticl | =30 for T<T.. With the esti-

At, [ =AD t, (R)=0.10N N?, (3.49
ReA

IV. MONTE CARLO RESULTS
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FIG. 1. Scaling functiorfpe(x) of the Casimir force for thel FIG. 2. VarianceAt, | of the stress tensor for the Ising model

=3 Ising model in a slab geometry for periodic boundary conditionsin d=3 [see Egs(3.34 and (3.49], normalized toN2l at fixed

as a function of the scaling variable=tN'”, whereN, =L, /a is aspect ratioN;/N, =6 as a function ofN, for different reduced

the number of lattice layers. The aspect ratio is choseN;&aN | temperatures in the critical regime. The behavior is linear as indi-
=6 (see main teyt Finite-size scaling according to our expectation cated by the straight lines connecting the data points. Their slopes
is confirmed within two standard deviations, where0.63 has have been evaluated as 1.39 fer-0.01, 1.55 fot=0, and 1.61 for
been chosen. The vertical scale has been adjusted according to tte0.01. The statistical error of the datane standard deviatigris
estimatef,e(0) = 2A ¢ n-1 =—0.306(see Ref[25]). The error bars  smaller than the symbol size.

displayed here correspond to one standard deviation.

shown in Fig. 2. The quadratic dependenceof | /N2 on

mate »v=0.63 for the correlation length exponent we finally h  ratio h o b firmed for the Isi del
obtain scaling within two standard deviations. The scaling" '€ @SP€ECt ratio has aiso been confirmed for the ISing mode

function f,e(x) decays exponentially for— % and has its in d=3 at T=T, from simulations at different aspect ratios
minimum below T.. However, due to the magnitude of the (not shown.
statistical error its location cannot be determined accurately ) ]
enough to exclud&=0 with reasonable certainty. The Monte B. Three-dimensional XY model
Carlo data for the Casimir force are not normalized due to In accordance with our findings for the Ising model we
the a priori unknown prefactod’(1)/R’(0) in Eq.(B8). The  find that the value 6 for the aspect ratio of the simulation
data displayed in Fig. 1 have therefore been scaled in suchlattice is also a good choice for th¢Y model. We have
way thatf,e(0) =246 =1 iS given by the best known esti- performed simulations foN, =16, 20, 24, and 30, where
mateApern-1=—0.153 for the Casimir amplitud&pe, - for ~ 4.8X 10° Monte Carlo steps per lattice site have been per-
the three-dimensional Ising modg5]. formed for all lattice sizes. It turns out that the energy de-
The scaling function displayed in Fig. 1 has been obtaineghendent contribution to EqB8) can again be disregarded
from Eq.(B8), where a spatial average over all lattice sites iswithin the statistical error obtained from the simulations.
performed. As expounded in Sec. (Hee also Ref14]) this As in the Ising case we determine the normalization factor
leads to a certain size dependence of vagiance of the  J'(1)/R’(0) in Eq. (B8) from the requirementf,e/(0)
stress tensor as, e.g., given by K§.34 for the spherical =2A.,,-,. Unfortunately, all estimates fahpe,n-p, Which
model and by Eq(3.49 for the Gaussian model. In order to are currently available, are based on ¢hexpansions quoted,
investigate the variance also for the Ising modetim3 we  e.g., in Ref.[6]. Independent Monte Carlo estimates for the
have recorded the distribution function of the stress tensoCasimir amplitudes of th&Y model do not exist and rigor-
during our Monte Carlo simulations. It turns out that the ous results for the two-dimensiondl model are limited to
shape of the distribution function is captured by a Gaussiatemperatures below the Kosterlitz-Thouless temperature,
distribution to a very high degree of accuracy also for thewhere the model renormalizes towards the two-dimensional
Ising model(see Ref[13]). We are therefore able to extract Gaussian fixed point. The Gaussian modell#2 is charac-
the variance of the stress tensor average from a least squatsgized by the central charge=1 and therefore the Casimir
fit of the measured distribution function to a Gaussian, wher@amplitude for the two-dimensionlY model in the low tem-
the variance is one of the fit parameters. Guided by Eqsperature limit is given by Apern=2g-2=—mC/6=-7/6

(3.34 and(3.49 we have normalized the variancel‘tﬁ in =-0.5236[26].
order to obtain a linear law at fixed aspect ratio. Our results Apparently, thee expansion underestimates the magni-
for Ny/N, =6 are displayed in Fig. 2. tude of the Casimir amplitud@ e, ,-; of the critical Ising

The functional dependence is indeed linear and the slopmodel ind=3, i.e.,e=1. From the structure of the critical
at t=0 (T=T,) is 1.55 as compared to 0.10%/N,)?>  Ginzburg-Landaup* theory and the nature of the two-loop
=3.85 forN,/N, =6 according to Eqg3.34 and(3.49 for  approximation to the Casimir amplitude we expect thatshe
the spherical and the Gaussian model. The strict linearitgxpansion will also underestimate the magnitudé of. , for
also prevails for other temperatures in the scaling regime aanyn. This leads us to the conclusion that thexpansion of
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FIG. 3. Scaling functionf,e(x) of the Casimir force for thel FIG. 4. VarianceAt, , of the stress tensor for theY model in

— . 2 .
=3XY model in a slab geometry for periodic boundary conditions asd=3 [Se€ Eqs(3.34 and(3.49], normalized toN' at fixed aspect
a function of the scaling variable=tN”, whereN, =L, /a is the  atio N,/N, =6 as a function oN, for different reduced tempera-

number of lattice layers. The aspect ratio is chosemasl, =6 turest ir_1 the_critical regime. The behaviqr is Iinea_lr as indicated by
(see main te3t Finite-size scaling according to our expectation is the straight lines connecting the data points. Their slopes have been
confirmed within two standard deviations, where0.67 has been €valuated as 2.63 fa=-0.01, 2.78 fort=0, and 2.86 fott=0.01.
chosen. The vertical scale has been adjusted according to the eslif® Statistical error of the datane standard deviations smaller
mate fper(0) = 2A per n=p=—-0.56 (see main tejt The error bars dis- than the symbol size.
played here correspond to one standard deviation.

function of the stress tensor is again given by a Gaussian to

the ratio a very high accuracy. The corresponding resultﬁt)[,l/Ni
is shown in Fig. 4.
5 (n+2 1 The functional dependence is again linear and the slope at
ern 2 :
A =n|l--e -5 ] +0(e9) (4.1 t=0 (T=T,) is 2.78 as compared to 0.10%/N,)2=3.85
per,n=1 n+8 3

[see preceding section and E@8.34 and (3.49)] for the

and denominator individuallysee Ref.[6]). We therefore Prevails for other temperatures in the scaling regime as
adopt the approximation shown in Fig. 4. In summary th¥Y model behaves just as

the Ising model with respect to the variance of the stress
5/n+2 1 tensor.
Apern=-0.1531-~ n+8 3 (4.2

4\n+8 3 C. Three-dimensional Heisenberg model
as our estimate fon ., in d=3 in the following, where We have repeated the simulations finally for the Heisen-
Aperne1=—0.153(see abovehas been used. From E@..2) ~ Perg model ind=3 with the same geometric and statistical
we then have data as for theXY model for the same reasons discussed
above. We note again that the energy dependent contribution
Aperp =~ 0.28 (4.3 1o Eq.(B8) can be disregarded within the statistical error

obtained from the simulations.

for the three-dimensionaXY model. The resulting scaling ~ The normalization factod’(1)/R’(0) in Eq.(B8) is deter-
plot for @e(x) is shown in Fig. 3. mined from the requiremerl,e(0) =2A ¢, -3, Where the es-

For T=T, finite-size scaling works very well, whereas for timate
T<T, data collapse foN, =30 is again not as good. How- A ~-039 (4.4)
ever, the data collapse is still acceptable within two standard per.3 ' '
deviations, so we refrain from performing additional runsused here has been obtained from E42) for n=3. The
here. The scaling functiorf,.(x) decays exponentially resulting scaling plot fo,e(x) is shown in Fig. 5. FofT
aboveT, for x—< and displays a minimum beloW,. Un- =T, finite-size scaling works very well, whereas fo T,
like the Ising model theXY model exhibits long-ranged cor- the scatter of the date is larger than for #¥ model. How-
relations also belowT. (Goldstone modgswhich are a ever, the data collapse is still acceptable within two standard
prominent feature in Fig. 3. The scaling functigiye(x deviations. The qualitative shape of the scaling function
— —o) saturates at about half its minimum value and does n@,.(x) is the same as for thXY model. The Heisenberg
longer decay to zero. model also exhibits long-ranged correlations belowGold-

We have also evaluated the size dependence of the vastone modeswhich is a prominent feature in Fig. 5. The
ance of the stress tensor for thi& model along the lines of scaling functionfe(x— —=) saturates at about three quar-
the previous analysis for the Ising model. The distributionters of its minimum value.
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0 g g y y - 4. In summary the Heisenberg model behaves just as the
0.10 = ] Ising and theXY model with respect to the variance of the
850 il | stress tensor. -
o Apart from different slopes there are no specific differ-
5 (X)'0-30 ﬁ;( 1 ences in the behavior of the variance of the stress tensor for
Per-0.40 H ] all spin models investigated hereds 3. However, the scal-
050 % ] ing function of the Casimir force does display specific dif-
g N =16 oc. ferences as one may expect from the presence and the in-
450 u [ N e creasing dominance of Goldstone modes belgw
-0.70 Ho¥ex g N : =24
1 —k—
-0.80 % N,=30 -+
- . . ' ) V. SUMMARY AND CONCLUDING REMARKS
% = 2 . =0t N 2 % 6 In the current paper an operator—the stress tensor

operator—on a finite lattice system has been constructed so
FIG. 5. Scaling function,e(x) of the Casimir force for thel ~ that its average value gives the universal behavior of the

=3 Heisenberg model in a slab geometry for periodic boundanthermodynamic Casimir force near the critical point of a sys-

conditions as a function of the scaling variabletN”, where  tem with short-ranged interactiofisee Eq(2.11)]. The defi-

N, =L, /ais the number of lattice layers. The aspect ratio is chosernition of the operator holds in systems in which the hyper-

as N,/N, =6. Finite-size scaling according to our expectation isscaling is valid[for O(n) models that are systems with

confirmed within two standard deviations, where0.71 has been dimensionality 2<d<4]. Its explicit form for the two-

chosen. The vertical scale has been adjusted according to the estimensional Ising model ifsee Eq(3.7)]

mate fpe(0) = 2Apen=3=—0.78(see main text The error bars dis-

played here correspond to one standard deviation. 1

1 ~ A
tyxis0) = - =(SS 41— 5 Sw1) + 5 (Be = B)(H — Hy),
Finally, we have evaluated the size dependence of the 2\2 2

variance of the stress tensor for the Heisenberg model along (5.1
the lines of the previous analyses for the Ising and Xie
model. As before the distribution function of the stress tensor , . . . .
is given by a Gaussian to a very high accuracy. The corre\fvhIIe that one fqr thed—d|me_nS|onaI(2<q<4) spherical
sponding result fOAtJ_,J_/Ni is shown in Fig. 6. and thed-d|men3|o_nal Gaussian models[isee Eqs(3.22

The functional dependence is linear and the slope=t and (3.37), respectively

(T=T,) is 3.92 as compared to 0.10¥/N,)?>=3.85 [see
[ l

previous sections and EqR.34) and(3.49)] for the spheri- BJ a1
cal and the Gaussian model. The strict linearity also prevails t, (R)= a2 > SiSreg,~ (d- 1) SkSkie,
for other temperatures in the scaling regime as shown in Fig. k=1
1 ~ A
130 : . : : * g, Be = BH = Hy). (5.2
120 F
110 ~ o . . .
100 HereH is the Hamlltqmar(normallzed per unit particjeof
90 the finite system and+, is that one of the infinite system.
Aty For the spherical model one has to take into accountithat
N2 38 =1/(d-2), while v=1/2 for theGaussian model. In the ex-

ample of the two-dimensional Ising model, the spherical
model with 2<d<4, and the Gaussian model we have veri-
fied via exact calculations the correctness of the above pre-
= sentation. They reproduce the correct values of the Casimir
54 . ) . ] amplitudes aff=T; and, for the spherical and the Gaussian
10 15 20 25 30 models the expressions for the force derived via the excess
Bl free energy and via averaging the stress tensor operator are
FIG. 6. VarianceAt, , of the stress tensor for the Heisenberg giving. Fhe same results. The amplitudes and the force near
model ind=3 [see Eqs(3.34 and (3.49], normalized toN? at the cr|_t|cal point of .thc? bulk system turns out, as expgcted_, to
fixed aspect ratid\,/N, =6 as a function oN, for different re- D€ universal and is in full accordance with the finite-size
duced temperaturesn the critical regime. The behavior is linear as Scaling theory. An evaluation of the variance of the so de-

indicated by the straight lines connecting the data points. Theifined Casimir force has been also performed. If the summa-
slopes have been evaluated as 3.77tfor0.01, 3.92 fot=0, and  tion is performed over all the particles within the system the

4.03 fort=0.01. The statistical error of the datane standard de- corresponding result for the two-dimensional Ising model is
viation) is smaller than the symbol size. [see Eq(3.11)]

60
50
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o 1 l 2 0.05
AiEj 1) = 5| = 5+ — [NLNy = 0.068, Ny, (5.3 ol &
' -0.05} * x
while that one for the three-dimensional spherical and the X
Gaussian models isee Eqs(3.34) and(3.49] 00
o 0-0.15 e , 2 X
At,  =AD t, (R)=0.10MN N (5.4) n 020k 5
ReA 025 Ising —¢
The average values of the above stress tensor operator are _ XY =
-0.30 Heisenberg —-
. L Spherical —
<Etxx<| 1>> TN, 69 e -
12N -0.40 '
5 -4 3 2 - i 2 3 4 5
for the two-dimensional Ising modésee Eq(3.4)], x=tN,"
44(3) FIG. 7. Scaling functi /n of the Casimir force =3
t — t R)\=— N, N 56 .7 g functiorfpe(x)/n of the Casimir force i
) <R§A 11 )> N3 ( (5.6 in a slab geometry for periodic boundary conditions as a function of

the scaling variablex= tNl’V, whereN, =L, /a is the number of
lattice layers. Monte Carlo data are shown for the Ising model

—— 0306(|\| Nf (5.7 (+,n=1), the XY model (X,n=2), and the Heisenberg model
NG (*, n=3) with lattice sizeN,=180 andN, =30. The solid line shows
for the three-dimensional spherical modske Eq.(3.31)], fpedX)/1 in the spherical limit(n— <).
and )
DM\ a1
{3 Aty =—3" NN, (5.19
t0=( S L)z G0N 59 F
Red * whereD(T) is a slowly varying nonuniversal function df
03 close toT, andA is the usual Casimir amplitude.
——— (N Nu2 (5.9 Based on the proposed operator, Monte Carlo calculations
NG have been performed and the Casimir force scaling functions

have been determined for the three-dimensional 1sKg,
and Heisenberg models. The scaling functions decay expo-
nentially to zero above the critical temperature. The same
happens for the Ising model also beldw while for theXY
€ ) (5.10 and Heisenberg models they tend to a constant because of the

Ll existence of the Goldstone modes in this regime in these two
of the so-measured force from the above results one themodels. Our results foD(n) spin modelspn=1,2,3 ¢, are
derives summarized in Fig. 7. The data fépe(x) are normalized to

12 n in order to obtain a direct comparison with the spherical
~ 0155(&) N (5.11) limit, for which the exact result is shown.
Pv i) . .

I Our results confirm that one has to take into account the
ratio between the thickness of the film and its lateral dimen-
sions, when planning the settlement of an experiment, in

order to achieve the desired noise-over-signal ratio. The nu-
pyv=1. 069( N )N3/2 (5.12  merical results that are presented can be considered as a type

! of such measuring of the force by Monte Carlo methods.
for the spherical model, and They demonstrate clearly that high accuracy in such type of
measurement of the force is indeed possible to achieve.

for the three-dimensional Gaussian mofiete Eq.(3.42)].
For the “noise-over-signal” ratio

VAL
pv=

for the Ising model,

Ny \ a2
py=0.85 NT“, (5.13
N, ACKNOWLEDGMENTS

for the Gaussian model. In the general case of a D. D. acknowledges the hospitality of Max-Planck-
d-dimensional critical system the corresponding ratio at thenstitute for Metals Research in Stuttgart as well as the fi-

bulk critical point is nancial support of the Alexander von Humboldt Foundation.
(d-1)/2
__ Db (N a2 APPENDIX A: THE CORRELATION LENGTH
Py N (5.14
(d-1A\ N, AMPLITUDE RELATION
where D=D(T—T,) is a nonuniversal constant that de-  The coordinate transformation given by Eg.7) removes
scribes the behavior of the variance of the tensor, i.e., the anisotropy from the spin model defined by E2.1) in
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the vicinity of the critical point. From the coordinate trans-
formation and the principle of two scale factor universality a
relation between the correlation length amplituggg\) and

PHYSICAL REVIEW E 69, 046119(2004)

=0.
A=0

(A7)

d
a{[&,o()\)]_1[§||,o(7\)]_(d_1)}

£, o(\) [see Eq(2.6)] can be established, which will be de- From Eq.(A?) we finglly obtain the important correlation
rived in the following under the assumption that hyperscaldength amplitude relation

ing is also valid, e.g., for d<4 and short-ranged interac-
tions.

According to the coordinate transformation given by Eq.
(2.7 we obtain¢ =¢; and & =R(\)¢, =¢ [see Eq.(2.9)],
i.e., the parallel correlation lengi) of the (untransformey

0, (AS8)

A=0

d d
(d-1) a'fn,o(?\) + 5&,00\)

A=0

which is needed in the derivation of the stress tensor repre-
sentation of the Casimir force for lattice spin models pre-

anisotropic system remains as the only correlation length ofented in Appendix B.

the (transformedl isotropic system. According to the prin-

ciples of two scale factor universality and hyperscaling the

singular part of thé€bulk) free energy densitjlt’,’smg(t) of the
transformed spin system can then be written in the form

ft’),sing()\!t) = -A[gll()\at)]_d,

wheret=8.(\)/ -1 is the reduced temperature addis a
universalamplitude. Strictly speaking, one has to distinguish
betweentwo universal amplitudesd, for T>T. and.A_ for
T<T,. We disregard this distinction in E§A1) in order to
simplify the notation. EquatioAl) is valid for T>T. and
T<T, separately provided, the correlation length remains
finite for T<T.. According to Eq(2.7) the unit volumev of
the system transforms as

(A1)

v' =R(\)v (A2)
and therefore we find
fpsind N 1) = ROV Fg sing A 1)
= ARMLEN DT
= ARME DTG DT
= ALE DT EN DY (A3)

for the singular part of the bulk free energy density of the
anisotropic, i.e., the untransformed system.
According to Eq.(2.6) we have the alternative form

fosing M t) = ALEL oI & N @Vt
= AN)|BMN)/B=- 1| (A4)

for Eq. (A3). The nonuniversal amplitudes(\) and B:(\)

must be independent of the labeling of the lattice axes, i.e

APPENDIX B: THE STRESS TENSOR REPRESENTATION
OF THE CASIMIR FORCE

The derivative of the excess free eneifgy with respect
to \ at the isotropic poinh=0 is given by Eq(2.9) in the
main text. The relation between E.9) and the Casimir
force defined by Eq(l.1) yields a lattice expression of the
stress tensor. This will be investigated here in the critical
regime. Above the critical temperature all expressions will be
exponentially small and can be neglected. Below the critical
temperature Goldstone modes@iN = 2) systems also give
rise to algebraically decaying finite-size effects, which will
not be considered here.

In order to find the relation between Eq4.1) and(2.9)
we use the coordinate transformation given by &q7) and
note that unlike the unit volume [see Eq.(A2)] the unit
area remainfvariant under Eq.(2.7). We recall that in the
transformed (isotropig system we haveg' o(\)=§ o(\)
=§,0(\) and we therefore find

dfy| _ diy
G TN IO N
— aféx ﬂ + &ftlax dglo
Il |\zo O\ =0 €| ola=0 OIN |i=0
af. d¢’
=—BF~.. R(OL, + ex 1,0 ,
ﬁ CaS|m||R( ) 1 é’gl,o o d)\ 0
(B1)

where Egs(1.1) and(2.8) have been used. In order to evalu-

the direction which is chosen to be the “perpendicular” onedte the derivativeif,/o¢) , in the critical regime, we use
From this symmetry argument and the particular choice ofh€ critical finite-size scaling form

the coupling constant$(\) andJ, (\) in Eq. (2.2) we have
already obtainegs’(\=0)=0 in Eq.(2.5. Likewise, we ob-
tain A’(A=0)=0 from this symmetry argument. We therefore
conclude that

A=0

d
an fi,sing\. 1) 0 (A5)

and that due to

AN = A[€, oNTTHE N,

one also concludes fro®’(A\=0)=0 that

(A6)

fot,L) =L Vg L /¢ 9], (B2)

and disregard the exponentially small contributions to Eq.
(B1) from the regular part of the excess free energy. Note
that for periodic boundary conditions the free energy of the
finite systemf’(t,L) can be decomposed, as usual, in a
regularf/,(t,L ) and a singulafg,t,L ) parts, where the
regular partfi(t,L’) can be taken to be equalp to,

eventually, exponentially small correction® that one of
the infinite system, i.e.fio(t,L')="f(t,) [11]. That is

why, for the periodic boundary conditions, the above

equation(B2) is valid for thetotal excess free energiand
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not only for its singular pajt From Eq.(B2), we immedi-
ately obtain

3 fey :_L&féx
(953_‘0 =0 Vgo &t '

where all terms on the right-hand side of EB3) have al-
ready been evaluated at=0. To further evaluate EqB3)
we note that the excess internal enetgyis given by

_9fex_ Bl0) dfex

(B3)

= = . B4
Uex (?,3 ,32 It ( )
In the vicinity of 8=.(0), Eqg. (B3) can be rewritten as
A 1
— | = [B0) — Bluex. (B5)
agL’O \0 Vfo BC B ex

In order to evaluate the derivatid’ ,/d\|,-o in Eq. (B1)

we note that according to Eq.7) we have &) o(\)

=§ o(N). From the definition oR(\) given by Eq.(2.8) we

find by taking the derivativeR’(\) with respect to\ at \
R'<o)=3[ %o o

=0,
&L oA x:o_ d\ x:o}'

We eliminatedé, o/d\|,=o from Eq.(B6) using Eq.(A8) of
Appendix A and obtain

(B6)

%’ :@R/(O).

d\ |, d

We finally insert Eqs(B5) and (B7) into Eq. (B1) and, by
rearranging the terms, we obtain for the Casimir force

L B
BF casimir=[R'(0)] I_I“'Lnoc Ll(‘j_ll_L

d-1
X <E LEl SkSree,~ (A= 1)SRSR+eJ >

(B7)

R
1 Uey
4 [B:(0) - B]:

=(t, ), (B8)
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an arbitrary finite connected region of spins whose mutual
probability distribution is obtained by taking the thermody-
namic limit while integrating out all spinsutsidethat fixed
region. This is done for any finite region of the latticErom
Egs. (B8) and (B9) the operator form of the stress tensor
given by Eq.(2.1]) in the main text can then be read off.

APPENDIX C: THE TWO-DIMENSIONAL ISING
MODEL

As it has been shown in the main text, see @&q7), in the
critical region of the finite system the stress tensor is given

by

1 1 ~ A
tix(i]) = ﬁ(s,js,jﬂ =S58+ 5B~ A(H —Hy).

(Cy

Let us now calculate the variance of the stress tensor
At,(i,]), which we will interpret as a variance of a local
measurement of the Casimir force made near the gojpt
For the leading behavior of the variance n&arone has

Atiy((.) = XSS o1~ S1)?) — exi)))?
= 1-(S jSe1) ~ (D) (c2)
Obviously, it holds that(Sj,1S1;)=(Sp 1S1.9= (S o519,

because of the symmetry of the Ising model on a square
lattice under periodic boundary conditions. The correlations
(S,05;,0 are well known for the bulk systeifri5].

(i) ForT<T,,

(S8 = EE(E) 3
T \u
(i) ForT>T,,
2
(S,0S10 = E[E(u) + (U= DK (W], (C4)
where, according to Eq2.4),
u = sinh(28J,)sinN(2BJ,). (CH)

(i) For T=T,, which is given byu=1, it follows that

where Eq(2.9) has also been used. Note that the first term in(So,051,0=2/. . _
Eq. (B8) is generated by the anisotropy variation whereas the In the above expressior§ andE are the complete ellip-
second term originates from a change in length scales edic integrals of first and of second kind, respectively. From

forced by the coordinate transformation given by Efj7).
In order to express E@B8) as the thermal averadg, )

them and Eq(C2) one easily obtains expressions for the
behavior of the variancat,,(i,j) of the stress tensor below,

of the normal component of the stress tensor we note that @ove, and alc. At T=T,, for example, one has that

UedL | =U— U, (B9)

whereu is the volume energy density of the slab andhe
volume energy density in the bulk. Naturally,and u, are
thermal averages of properly normalized Hamiltonidris
and’H,. More specifically,H is the Hamiltonian of the finite

system normalized per unit volume, Whiféb is the corre-
sponding Hamiltonian for the bulk syste(ire., one imagines

Atyy(i,j) =1 - 2/, (C6)

Definitely, in addition from the above nonuniversal part the
variance contains also universal parts that are negligible in
comparison with the nonuniversal one.

An estimation can be also derived faE; ; t,,(i,j). With
a variance of such a type one deals when, say, Monte Carlo
simulations of the force are performed. According to Egs.
(2.14 and(2.15), atT=T,,
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&2 ~
AT = SN Xe]= ML—[ BHTN], UwN) == S m[wu-&]
2Ny, J(0)
(C7) -
_1 f dx e — g X E X{1-30013(0)]
and, therefore, from Ed3.7) it follows that 2J9 X KB,

(D3)

2 ~
L2 - AT,

A (i) = 5 ——=M
iz_j”( D )

The supremum is attained at the valuenothat is a solution
(C8  of the (spherical field equation

It is clear that the leading-order behavior of the variance will

stem from the bulk contribution to the free energy—the e‘XWe W 1-2()/3(0) Jdx= K. (D4)
finite-size terms will produce only corrections to it. The bulk NkeB
free energy of the anisotropic two-dimensional Ising model A
is well known (see, e.g., Ref15]) For nearest-neighbor interactions the Fourier transform of
the interaction reads
1 do do.
-pf=in2+7 J 1 J 2In[cosk(2/3JX)cosf(2/5’Jy) .
. . J(k)=2>, J; codkia). D5
- sinh(2BJ,)cod 6;)- sinh(28J,)cog 6,)]. (C9) (k) gl j codkjay) (DS)

Setting hereJ,=(1+\)J and J,=(1-\)J, we immediately
obtain -Bf(BJ,\), and from Eq.(C8) one then derivesat
T=T,) that

Then, for the spherical field equation and the sufuv,N),
we obtain

J‘w e_XW[H iz e—ij(l—COSkjaj)] - K, (DG)
0 =1 Nj

i

AS ol =] -5+ f def "
ij 772 - ! - 2

1(”dx 1
. ﬁ . &) U(w,N) = _J _(e—x _ e—xw|:H _E e—xbj(l—coskjaj)] ) ’
) smz( ) >S|n2< 5 2Jy x N
(1 _ cog6y) +cog6y) )2 (D7)
2
il 1 2 whereb;=J;/S_, J;. Using the identity[27]
:—[——+—}ML~—~0.068\/IL. (C10
2l 2 7 Nel
2N
We again observe that the variance of the sur, ¢ ,j) is > exp x cos— - [ = N2 1), (D8)
n=0 gq=-%

proportional to the total number of summands in this sum.
This is the result given in Eq3.11) in the main text.
Equations(D6) and (D7) can be written in the form

APPENDIX D: THE SPHERICAL MODEL

0

" d
f e[ ] [e"‘bj > Iqij(bjx)]dx= K (D9
=1

Using the identity

0 qj:—oo
* dx e
In(1+2) = 7(1 -e e, (D1) and
0
the equation for the free ener@$.17) becomes 1 (”dx
) 40 UWN) =2 j ;( el [ > IqjNJ.(bjx)D.
1 K 1 0 4=
ﬂf(K,N):§|:|nZT—K:| +V§IEE{U(W,N)—EKW}, (D10)
(D2) In analogical way one can consider the behavior of the
bulk system. Then, in the limil;—, j=1,... d, one ob-
where tains the bulk equation for the spherical field

046119-15



D. DANTCHEV AND M. KRECH

<=
0

1 27 2 1
:Wfo dnl"'Jo dnd d y

w+ > b(1 - cosn))
=1

Io(l;x) Jdx

d
e—wa [e—xb
j=1

(D11)

and the following contribution into the free energy:

d
Up(w) = ZJO f( X — 'XWH[e io(bX)] )

1 1 J‘Zﬂ' 2
== dn J d
2(2m%), ' 0 u

d
X In[w+ > b(1- COSHJ-):| .

=1

(D12)

In a similar way, starting from Eq.3.18, one can show

PHYSICAL REVIEW E69, 046119(2004)

J
t,,(R)= B_

i Esqsmk (d= 1SS,

1 -~
* g, Be BH ~Hy), (D19
where? is the Hamiltoniar(normalized per unit particjeof
the finite system and,, of the infinite system.

1. Evaluation of the finite-size excess free energy
of the anisotropic system

From Egs.(D10) and(D12) one has

that the bulk two-point correlation function in such an aniso-

tropic system is

G(r,t)=

" d
1 f dp e‘PH exp( 91)
WBJ(O) w
2m
>< — exp{ln l.+p cosn]} (D13)

Supposing that>1, j=1, ... d, from Eq.(D13) one obtain

G(r,t) =

W >
% d ex _ﬁl
wBJ(0)7o =1 \pbw
(D14)
wherefrom one concludes that the correlation lengthn
directionj is
&= 2b//w (D15)

with the critical point of the system given =0 [note that

in the spherical model, because of the so-called equation of All What remains now is to deal with the behavior of the

the spherical field, EqD11), w depends on the couplirig,

dimensionalityd, and on the anisotropy described by the

constantdy;, j=1,... d]. Therefore, one has

éz\/ﬁz\/i
& by J

(D16)

TakingJ;, j=1, ... j in the form prescribed by E¢2.2) one
obtains
d dJ(1
el (@) - __( ), (D17)
d\ \& 0/ lh=0 23D

and, thus, making use of ER.11), we derive the explicit

form of the stress tensor within the spherical model

UW,N) = Up(w) + AU(W,N), (D19)
where
Cdx -xb;
ANy =-23 [ & XWHe g (Xby).
247070
(D20)
Next, with the help of the expansida7]
exp(x - v2/2x)( 1 9-327 )
| (X)=——————1+—+ +e,
#) V27x 8x  21(8x)?
(D21)
AU(w,N) can be cast in the form
d 22
dX e—N~q~/2xb-
awN =-=S | Zeo[TE2 (022
2q¢0 X j=1 \r’2’7Tij
wherefrom, in the limit of a film geometriN;,N,, ... ,Ng_1
—oo, With Nyj=N, one obtains
2 (b )t Ka2(qyV y)
AUW,N,)=- (277)d’2<?|> d/42 T N
(D23

Here we have taked;=J,=---J4-1=J, and J4=J,, which
corresponds tdo;=b,="--by_1=b; and by=b,, whereasy
=2WN2 /b, .

bulk term Uy(w) whenK is close toK, i.e., whenw<1.

This analysis is well known for the isotropic case, here we
will, very briefly, extend it to cover the anisotropic case also.

Starting from Eq(D12), one obtains

W

1
Up(w) = Up(0) + 5[ do Wy(w|b), (D24)

0

where

d
{e‘x -11 e’XbJIO(xbj)] (D25)
j=1

1(”dx
Ub(O)ZEJ i~
0

is a temperature independent constant and

046119-16



CRITICAL CASIMIR FORCE AND ITS FLUCTUATIONS.. PHYSICAL REVIEW E 69, 046119(2004)

d 1l K 1
Wy(w|b) = f dxe X“’H &bl o(xby) (D26) BF(K,N[b) = E{mz -K|+ EW(KC_ K) +Uy(0)
_1 T(=d2) d2
is the generalized Watson-type integtdle standard one is 2 d _w
with b;=b for all j=1,... d). Using the standard technique m¥?[] Vb,
for evaluation of such type of integralsee, e.g., Refl7]) =1
one derives that, for d <4, d -N2q2/2xb
e’ I
-5 E e[ “— (033
Wy(wlb) = Wy(0lb), (D27) 2500 x7 i 2w
wherew is the solution of the finite-size equation for the
wherefrom it follows that, again for2 d<4, spherical field
I'a-d2)
1 1 I'(-dz2 - _t =T WE  die-1
Up(w) = Uy(0) + EWWd(O|b) ) ( d ) — w92, K=K+ d _w
d2TT Jp. (2m)¥2] ] Vb
(27T) Jl:{ AY bJ =1
D28 © q /2Xb
(28 +> | dx eXWH —_. (D34
q#070 j=1 \'217Xb

Taking into account that in terms of the “anisotropic” Wat- _ _ -
son integral the equation of the spherical field simply is ~ Recalling that, for 22d<4, the spherical model has a criti-
cal exponentv=1/(d-2) one can, in the limit of a film ge-
K = W,(wlb). D29 ometry N;,N,, ... ,Ng_;—<°, from Egs.(D23), (D31), and
a(wib) (029 (D33), obtain an expression for thexcessree energyB(f

and that, according to E¢D15), the critical point is fixed by ~ o) (per spin,

w=0, we conclude that the critical coupling of the aniso- 1
tropic system is Bl F(K.NL[b) = fi(K[b)] = | Zxa(y =¥-)

d w d _ d-1)/2

1T(-d2) (b, \(
Ke=2B:.2 J;=Wy(0b)= | dx] ] e™®ily(xby). " A (_i> (42 - yi2)
j=1 0 j=1
(D30) 2 (b, |2 e Kaa(avy)
- (2m¥2 Fu 2 d/2 NL

Then, close toK=K,, for the free energy density of bulk
system from Eqs(D2), (D28), and(3.23 one obtains (D39

in a scaling form. In the above equation
1| K 1
Bfp(Klb) = E{m_ - K} + EWb(KC_ K) +Uy(0)

1
2m X =b, (K.~ KN, v= d-2 (D36)
1 I'(-d2)
) d o2, (D31) is the temperature scaling variable,= 2WbN'i/bL is the so-
(2m) 9] \E] lution of the bulk spherical field equation

1 T@-d2)(b, \¢v2
>X = W(ﬁ) yy2 (D37)
|

where, forK <K, the parametew, is the solution of the

equation while y=2wN? /b, is the solution of the finite-size spherical
field equation
r@a-daz2) _
K=K+ — 5?2, (D32) _1, _ra-d2 (g><d‘1)’2yd,2_l
(27T)d/2H \‘”Ej 2 1 (47T)d/2 b”
j=1
2 (b )(d l/2yd/4 1/22 Kd/2 l(q\y) )
whereas forK > K, the supremum of the free energy is at- (277 dlz by dlz !
tained atw,=0. Similarly, for the free energy density of the (D38)
finite system from Eqs(D2), (D22), (D28), and(3.23 we
obtain For the Casimir forcgsee also Eq(l1.1)]
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07 l . _ — . _ 3— 1
BF casimir= = ———[N_ B(f = fp)] (D39) A=— | Lig(e%) + 1y, Lin(e™Ve) + Zy3? |,
N, 27 6

from Eqgs.(3.24), (3.26), and(3.27) one obtains (D47)

where L(2)=2,_ 1Z/KP is the polylogarithm function of

a1 order p. Taking into account thatk(5/2,x)= 77/2x(1
BFcasimir= N | le(y—yw)— (d-1) +2/x+3/x9)exp(-x) [20] and Eq.(3.30, one can easily
check that the right-hand side of E@.29 can indeed be
(bl>(d‘l)’2 IT-d2) 4o o written in the form given in Eq(D47).
>< —— — -
by 2 (4m)9? ( =)

2. Evaluation of the average value of the stress tensor

yd"‘z Kd,z(q\ry) (D40) Taking into account Eq(2.16), for the differeAnce of the
(2 )d’2 92 || finite size and bulk internal energy densities(*) andu,

=(7:(b>, one can easily derive from E¢D2),
We are ready now to determine the Casimir amplituties

the spherical model. Having in mind E@l.4), at K=K,
(theny.,=0), for the isotropic systertthenb, =b,=1/d ) one
obtains from Eq(3.28),

1 1 _
U-up=-— EJ(W—Wb) =- EJ(y— VN, (D48)

wherey=2dwN’ , and then from Eq(3.18 or Eq.(D2), to

1F( a/2) i, 2 ® Kd/z(qV'Z) obtain for the stress tens¢®.22 that
2 (am@2Ye T gmie 2 iz | L d-11 o cogkeay) - cogksag)
(t, (R)= a4 N > .
ke
(D41) By d(1+w) - E cos(kjaj)
j=1
where
d-
. — -2 y-yaNT, (D49)
P-d2) 4o 4 gaero Kaz-a(@Vye) 4d
(4m)32 Yo = d(2m¥2Ye d2-1 - 1 42 .
=1 g where, we recallx;=d™ (K.~ K)NT“ [see Eq(3.25]. Using
(D42) the identity[see Eq(D8)]
N-1 o
Using now that(see, e.g., Ref.19]) > co{@)exp[x COS(@)} =N 17 (%)
n=0 N N g=—x N '
2
Kpes(@) = K,a@ + K@), (D43) (D50)
wherel ! (x)=(d/dX)l,(x), in the limit of a film geometry, i.e.,
from Egs.(D41) and (D42) we derive whenN;,N,, ... ,Nyg1—, the above expression can be re-
written in the form
2 dia+1/2 OC Kd/2+1(qu;) * o
—_ ~df2r At Iel D44 2(d-1) _ _ -
dem e 2T gt (b4 L RY =2 [ et 1etg0)
g=170
with BFcasimi(Ke, L1 )=(d-1)ALT% The exact value of/, X & 210 gn(X) = lo(X¥) 1 gn(X)]
and A in an explicit form is only known fod=3. Then d-2)
_ - N Xy =¥ (D51)
y=4In7(1+5)/2] (D45)

It is worth mentioning that till now no approximation in the
(this value is well known and seems that has been derived fofg|culation of the average of the stress tensor operator has

the first time in Ref[18] and[19] been made. In order to obtain the scaling form of the above
expression such a step will be performed only now. Indeed,
23 i i
Ao é( )_ (D46) with the help of the expansiofD21),
m exp(x — v2/2x) 1 9-327°

. N )= = |14 e
This is the only exactly known Casimir amplitude for a V27X 8x 2!1(8x)
three-dimensional system. In RdR1] it has been shown (D52)
[see there Eq27)] that this value can also be written in the
form one can set the above expression in scaling form
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2d-1) o \ Kiea2@\y) | g AY T (R)= %[In > e"ﬁH("):I

(R =- d(277)d/2y =1 WNL ReA
- P ~
- NL"%W - Y-, (D53) =N, N 50- BH(TeN] - (D59)

Now it only remains to show that the right-hand side of thelfor the definition of ()] and f(T,\) see Egs.
above equation is indeed equal to the right-hand side of E¢f2-13—2.15. Comparing now Eqgs(2.19 and (3.22, we
(3.29 (for b, =b,), which gives the Casimir force calculated conclude that, aT=T, in the case of a spherical model
in a direct manner as a derivative of the finite-size free en-
ergy with respect to the size of the system. In order to dem-
onstrate that, let us first, with the help of identitip43),
rewrite the above expression for the stress tensor in the form

4 P
At (R) = GNINTT—5[= (T V)] (D6O)
ReA

__ 2(d_1) dr . Kdlz(q\‘@)
(tL(R)= {—(ZW)M [y Pl

1 o Kaoa(@\y)
+ ay(d+2)/42 %
q:

d-2
4d

+ xl(y—yw>}N1"- (D54)

Next, from the bulk(3.26) and finite-size equation8.27) of
the spherical field one directly derives

4leoc - 2(47T)d12 Yoo (D55)

and

1 T(-d2) 1 e Kaoma(ay)
_ ley: 2(47T)d/2 yd/2+ (Zw)d/zy(d 2)/4; qd/2—1

(D56)

wherefrom

o0 .
1 y(d+2)/4 Kaz-1(aVy)
g

(277 di2 - qd/2—l
1 ra-dz)
=- le(y = Ye) = W(Vd/2 -y?%). (D57)

Inserting now EQq.(D57) in Eg. (3.32 we conclude that,
indeed,

(t, 1 (R)) = BFcasimir (D58)

for the spherical model.

c. Evaluation of the variance of the stress tensor

If Al is the variance of the random variabfei.e., A
=L~ =(P)-(0? then atT=T,,

The finite-size free energy density of the anisotropic system
is given in Eq.(D33), where the anisotropy is characterized
by the constants

J, 14\
b.-=b,=:--=b.,=b, = =
1= 0 1T (0,40, d
(D61)
and
J, 1 d-1
by=b, = ——*——=>-"""\ (D62
AT d-13,+3, dd (D62)

Let us now first note that

K=p30)=28[(d-1)J,+JL]=28Jd (D63
does not depend ok and that
ﬁ b“ 1 (5’ bL d - l
— ==, —==-— D64
an d A\ d (D64)

It is clear from Eqs(D33) and(3.24) that the contributions

to the variance of the stress tensor stemming from the “finite-
size” and the singular “bulk” parts will be of the order of
(N.NS1/NY, while that one from the bulk regular part will
be of the order oN, N%"%. Because of that the leading con-
tributions will be nonuniversal. In addition to them one will
have also universal corrections, but we will neglect them in
the current treatment and will deal only with the leading-
order behavior of the variance of the Casimir force. Then,
from Eq.(D33), one has

4 2
A3 1R~ NN UOD)), (D69

ReA

where U,(0|b) =U,(0) is defined in Eq.(D25). Having in
mind Eq.(D64), it is easy to show that

P d-1/ ¢ P
5Ub(0|b) = T(EUb(qb) - EUb(OHO)) ,

(D66)

wherefrom one immediately derives
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Ub(0|b)).

(D67)

&P d-1/ & &
—Up(0lb) = ——| —5U(0lb) - ———
07)\2 b( | ) d <(?b2 b( | ) O7bL§bH

Performing now the calculations, from Eq§D25) and

(D67), we obtain

i 1 ”
Wub(0|b) = Ed(d - 1)]0 dx xe S_Z(X)

1
x{liw = 51000100 + |2<x>]},
(D68)

which leads to the following result:

PHYSICAL REVIEW E69, 046119(2004)

2(d-1) (7 )
At (R =- TNLN‘? 1f dx xI372(x)
ReA 0

X {li(x) - %'o(x)ﬂo(x) + |2(X)]}e_dx,
(D69)

for the variance of the Casimir force in the spherical model
at T=T.. This will be also the leading result everywhere in
the critical region. A numerical evaluation of EGD69)
gives

AtL,L =A E tL,L(R) = OlONLNﬁ
ReA

(D70)
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