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We present general arguments and construct a stress tensor operator for finite lattice spin models. The
average value of this operator gives the Casimir force of the system close to the bulk critical temperatureTc.
We verify our arguments via exact results for the force in the two-dimensional Ising model,d-dimensional
Gaussian, and mean spherical model with 2,d,4. On the basis of these exact results and by Monte Carlo
simulations for three-dimensional Ising,XY, and Heisenberg models we demonstrate that the standard
deviation of the Casimir forceFC in a slab geometry confining a critical substance in-between is
kbTDsTdsA/ad−1d1/2, whereA is the surface area of the plates,a is the lattice spacing, andDsTd is a slowly
varying nonuniversal function of the temperatureT. The numerical calculations demonstrate that at the critical
temperatureTc the force possesses a Gaussian distribution centered at the mean value of the forcekFCl
=kbTcsd−1dD / sL /add, whereL is the distance between the plates andD is the(universal) Casimir amplitude.
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I. INTRODUCTION

If material bodies are immersed in a fluctuating medium
the surfaces of these bodies impose boundary conditions that
select a certain mode spectrum for the fluctuations. This
leads to a contribution into the ground state energy of a
quantum mechanical system, or to the free energy of a criti-
cal statistical-mechanical system, which depends on the geo-
metrical parameters characterizing the mutual position of the
bodies and their shape. This is known as the Casimir effect
[1–3].

According to our present understanding, the Casimir ef-
fect is a phenomenon common to all systems characterized
by fluctuating quantities on which external boundary condi-
tions are imposed. Casimir forces arise from an interaction
between distant portions of the system mediated by fluctua-
tions.

In quantum mechanics one usually considers fluctuations
of the electromagnetic field. In this case correlations of the
fluctuations are mediated by photons—massless excitations
of the electromagnetic field[1,2,4,5]. In statistical mechanics
the massless excitations can be generated by critical fluctua-
tions of the order parameter around the critical temperature
Tc of the system[3,6,7]. Goldstone modes(or spin wave
excitations) in Osnd models at temperatures belowTc also
provide massless excitations[8–10]. Fluctuations of this type
are scale invariant and therefore the Casimir force is long
ranged in the above cases.

In this paper we discuss the behavior of the thermody-
namic Casimir force in systems with short-ranged interac-
tions undergoing a second-order phase transition.

To be more specific, let us consider a statistical-
mechanical system, a magnet or a fluid, with the slab geom-
etry Li

d−13L', whered is the dimensionality of the system
and periodic boundary conditions are applied. In the limit
Li→` (L' fixed) the Casimir force per unit area is defined
as

bFCasimirsT,L'd = −
] fexsT,L'd

] L'

, s1.1d

where fexsT,L'd is the excess free energy

fexsT,L'd = fsT,L'd − L'fbulksTd s1.2d

of the system. HerefsT,L'd is the full free energy per unit
area measured in units ofkBT and fbulksTd is the correspond-
ing bulk free energy density.

According to the definition given by Eq.(1.1) the thermo-
dynamic Casimir force is a generalized force conjugate to the
distanceL' between the boundaries of the system with the
propertyFCasimirsT,L'd→0 for L'→`. We are interested in
the behavior ofFCasimir when L'@a, wherea is a typical
microscopic length scale. In this limit finite-size scaling
theory is applicable. Then one has[11]

bFCasimirsT,L'd = L'
−dXCasimirsL/j`d, s1.3d

wherej` is the true bulk correlation length, whileXCasimir is
a universal scaling function.

At the critical pointTc of the bulk system one hasj`=`,
and [3]

bcFCasimirsTc,L'd = sd − 1d
D

L'
d , s1.4d

whereD is the so-called Casimir amplitude. This amplitude
is universal, i.e.,D depends only on the universality class of
the corresponding bulk system and the type of boundary con-
ditions used across L'. Obviously, one has D
=XCasimirs0d / sd−1d.

The Casimir force may also be viewed from the point of
view of conformal invariance of, e.g., critical systems[12].
The Casimir force in its simple form for the film geometry
sLi→`, L' finite) is due to theL' dependence of the free
energy fsT,L'd per unit area. The free energy therefore re-
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sponds to any coordinate transformation which changes the
value ofL'. On the other hand, any coordinate transforma-
tion which transforms a slab of thicknessL' into a slab of a
different thickness is nonconformal. Therefore, the Casimir
force is the response of the free energyfsT,L'd of the origi-
nal slab to a nonconformal coordinate transformation. The
change of the free energy due to a nonconformal coordinate
transformation is determined by the thermal average of the
stress tensortab associated with the Hamiltonian of the sys-
tem [12]. If the coordinate perpendicular to the surfaces of
the slab is denoted byz, it is easy to prove that the Casimir
force in the slab is given by the thermal average of the stress
tensor componenttzz [12] (see below).

Normally, one is interested inktzzl, which determines the
(average) value of the Casimir force. In addition, one can
consider any realizationtzz of the stress tensor to be propor-
tional to any realization, e.g., instantaneous value of the Ca-
simir force FC, where kFCl;FCasimir. That is the approach
undertaken recently by Bartolo, Ajdari, Fournier, and Goles-
tenian[13]. They consider a statistical-mechanical model of
a d-dimensional medium described by a scalar fieldF with

an elastic energy density proportional tos¹WFd2, i.e., one con-
siders an elastic Hamiltonian of the form

HfFg =
K

2
E ddRfh¹WFsRdj2g, s1.5d

whereR=sr ,zd. They assume that the plates impose Dirich-
let boundary conditions, i.e.,Fsr ,0d=Fsr ,L'd=0.

For the total Casimir forceFC
t ;Li

d−1FC it has been found
that

kFC
t l ; FCasimir

t = csdd
Li

d−1

bL'
d = csdd

A

bL'
d , s1.6d

wherecsdd=sd−1dGsd/2dzsdd / s4pdd/2 depends only on the
spatial dimensiond, while the variance of the forcesDFC

t d2

that can be considered as being produced ofNa=sLi /add−1

independent strings is

sDFC
t d2 ~

1

b2SLi

a
Dd−1

=
1

b2

A

ad−1 . s1.7d

In the above expressionsA;Li
d−1 is the cross section of the

system. From Eqs.s1.6d and s1.7d one obtains that the
“noise-over-signal ratio”r is

r ;
DFC

t

kFC
t l

~ SL'

Li
Dsd−1d/2SL'

a
Dsd+1d/2

. s1.8d

The probability distribution of the force has been found to be
Gaussian, i.e.,

PsFC
t = xd =

1

Î2pDFC
t

expF−
sx − kFC

t ld2

2sDFC
t d2 G . s1.9d

The structure of the current paper is as follows: First, in
Sec. II we present some general arguments and construct a
stress tensor operator for finitelattice spin models. Then, in
Sec. III, we verify our arguments by presenting exact results

for the two-dimensional Ising model(see Sec. III A),
d-dimensional Gaussian model(see Sec. III C), and for the
mean spherical model with 2,d,4 (see Sec. III B). Monte
Carlo results, based on our definition, are given in Sec. IV
for the behavior of the force and its variance. There the
three-dimensional Ising(Sec. IV A), XY (Sec. IV B), and
Heisenberg(Sec. IV C) models have been considered. The
paper closes with a discussion given in Sec. V. The set of
technical details needed in the main text is organized in a
series of Appendixes.

II. THE STRESS TENSOR FOR LATTICE SPIN MODELS

We will now reconsider the Casimir force for a
d-dimensional anisotropic latticeOsNd spin system with the
Hamiltonian(see also Ref.[13])

Hsld = − o
R

o
k=1

d

JksldSRSR+ek
, s2.1d

where ad-dimensional simple hypercubic lattice withLi
d−1

3L' lattice sites andLi @L' is assumed. The vectorR in-
dicates a lattice site and the vectorsek, k=1,2, . . . ,d connect
nearest-neighbor lattice sites on the simple hypercubic lat-
tice. The spinsSR are considered to be ofOsNd type. Fol-
lowing Ref. f14g and the general idea of conformal field
theoryf12g, we define the coupling constants in Eq.s2.1d by

Jksld ; Jisld = Jseld, k = 1, . . . ,d − 1,

Jdsld ; J'sld = Jse−sd−1dld, s2.2d

which means thatl=0 marks the isotropic point of Eq.(2.1)
due toJis0d=J's0d=Js1d. The functionJsxd in Eq. (2.2) is
supposed to be smooth and monotonic in the vicinity ofx
=1 but is otherwise arbitrary. The critical point of the bulk
spin model defined by Eq.(2.1) is given by an implicit equa-
tion of the type

K„bcJ1sld, . . . ,bcJd−1sld,bcJdsld…

= K„bcJisld, . . . ,bcJisld,bcJ'sld… = 1, s2.3d

where bc=1/skBTcd. The function Ksu1, . . . ,ud−1,udd is a
smooth function ofd variablesu1, . . . ,ud. Furthermore, at
Ksu1, . . . ,udd=1 the functionK is invariant with respect to
any permutation of its arguments, because the location of the
critical point is independent of the labeling of the lattice
axes. This also implies that the derivatives]K /]uk, k
=1, . . . ,d for K=1 all have the same valueK8Þ0 at the
isotropic point u1=u2=¯ =ud. For the two-dimensional
Ising model the functionK is rigorously knownf15g:

Ksu1,u2d = sinhs2u1dsinhs2u2d, s2.4d

but for dù3 exact results forK are extremely rare. From Eq.
s2.3d one immediately concludes that in general the critical
temperatureTc will depend on the anisotropy parameterl.
However, for the particular parametrization given by Eq.
s2.2d one finds at the critical pointssee also Ref.f14gd
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0 =UdK
dl
U

l=0
= bc8s0dK8fsd − 1dJis0d + J's0dg

+ bcs0dK8fsd − 1dJi8s0d + J'8 s0dg

= bc8s0dK8dJs1d, s2.5d

which immediately yieldsbc8s0d=0, i.e., for an infinitesimal
anisotropysl!1d the value of the critical temperature re-
mains unchanged and is given by its value for the isotropic
model.

The correlation length of the anisotropic bulk spin system
defined by Eqs.(2.1) and(2.2) will also be anisotropic. In the
vicinity of the (isotropic) bulk critical temperatureTc one
finds

jisl,td = ji,0sldutu−n and j'sl,td = j',0sldutu−n,

s2.6d

wheret=sT−Tcd /Tc is the reduced temperature andn is the
correlation length exponent which is universal, i.e., indepen-
dent of the anisotropy parameterl. At the isotropic pointl
=0 one hasji,0s0d=j',0s0d;j0. To simplify the notation we
ignore the fact that the correlation length amplitudes in gen-
eral also depend on the sign of the reduced temperaturet. We
therefore assume thatt.0 in the following.

In order to be able to apply finite-size scaling in the criti-
cal regime with respect to asinglecorrelation length, say,ji,
we employ the following anisotropic rescaling of the spatial
coordinates:

xk8 = xk, k = 1, . . . ,d − 1, and xd8 =
ji,0sld
j',0sld

xd.

s2.7d

This transformation has the desired property, namely,ji8=ji

andj'8 =ji as can be easily verified from Eqs.s2.6d ands2.7d.
For the lattice sizesLi andL' we find accordingly

Li8 = Li and L'8 =
ji,0sld
j',0sld

L' ; RsldL'. s2.8d

The link between the explicitl dependence of the free en-
ergy of our spin system according to Eqs.s2.1d ands2.2d and
the Casimir force defined by Eq.s1.1d is provided by Eq.
s2.8d. In the limit Li→` we find (see also Eqs.s24d ands33d
of Ref. f14g)

Udfex

dl
U

l=0
= − lim

Li→`

bJ8s1d
Li

d−1

3Ko
R
Fo

k=1

d−1

SRSR+ek
− sd − 1dSRSR+edGL ,

s2.9d

wherek¯l denotes the thermal average with respect to the
Hamiltonian given by Eq.s2.1d at the isotropic pointl=0.
From Eqs.s1.1d and s2.9d and the finite-size scaling form

fexst,L'd = L'
−sd−1dgexftsL'/j',0d1/ng s2.10d

of the excess free energyfexst ,L'd in the limit Li→`, we
obtain an expression of the Casimir force which is derived in
detail in Appendixes A and B. From Eq.sB8d derived in
Appendix B the operator form of the stress tensor component
t''sRd can be read off as

t''sRd = bJ8s1dfR8s0dg−1Fo
k=1

d−1

SRSR+ek
− sd − 1dSRSR+edG

+
1

dn
sĤ − Ĥbdfbcs0d − bg, s2.11d

where Eq.sB9d was used and the operatorsĤ and Ĥb are
properly normalized HamiltoniansHs0d fsee Eq.s2.1d and
Appendix Bg.

Equation (2.11) provides the connection between the
stress tensor componentt'' parallel to the surfaces of the
slab and the spin lattice model given by Eq.(2.1). It is valid
also for temperaturesT.Tc and thus generalizes Eq.(36) of
Ref. [14]. ForT,Tc Eq. (2.11) holds also forOsNd symmet-
ric spin models, because the correlation length ratioji /j'

remains finite atT=Tc and it can be continued analytically
into the Goldstone regime, where it can be used for the an-
isotropic rescaling of the coordinates according to Eq.(2.7).
Finally, we note that Eq.(2.11) only holds for periodic
boundary conditions.

For the purposes of this investigation Eq.(2.11) serves as
a prescription to obtain the universal scaling function of the
Casimir force in critical slabs with periodic boundary condi-
tions by Monte Carlo simulations. However, Eq.(2.11) con-
tains the ratioji,0sld /j',0sld of the correlation length ampli-
tudes for Eq.(2.1) as a prefactor. For the two-dimensional
(2D) Ising model this function is given by[15]

ji,0sld
j',0sld

=
J'sld + Jisldsinhf2bcsldJ'sldg
Jisld + J'sldsinhf2bcsldJisldg

, s2.12d

and by virtue of Eq.s2.2d, Eq. s2.11d can be made explicit.
But in dù3 no such information is available. However, in
the critical regime, where Eq.s2.11d will be applied, the
scaling argumentL' /j will typically not exceed values of
the order of 10. This means that we will be dealing with
reduced temperatures in the rangeutu,10sL' /j0d−1/n, i.e.,
the relevant temperature range diminishes as the system
size L' increases. As can be seen explicitly in Eq.s2.12d
the correlation length amplitude ratio only depends on the
temperatureT and doesnot display any scaling behavior.
Therefore, the generally unknown prefactor in Eq.s2.11d can
be treated as a constant for sufficiently large system sizes
which can be determined by a normalization ofkt''l to
known results atT=Tc f6g.

We end this section with some observations that turn out
to be very helpful for analytical calculations of the variance
of the force. Since they are model independent we give them
before passing to explicit calculations presented in the fol-
lowing section. Let us consider an anisotropic Hamiltonian
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of the type given by Eq.(2.1), where J1sld=¯ =Jd−1sld
=Jisld=s1+ldJ andJdsld=J'sld=f1−sd−1dlgJ. Then, it is
easy to see that

Hsld = Hs0d − lJo
R
Fo

k=1

d−1

SRSR+ek
− sd − 1dSRSR+edG ,

s2.13d

or, equivalently,

bHsld = bHs0d − lo
R

t̃','sRd, s2.14d

where

t̃','sRd = bJFo
k=1

d−1

SRSR+ek
− sd − 1dSRSR+edG s2.15d

differs only by a multiplying factor from the stress tensor
t','sRd defined in Eq.s2.11d.

Let f̃sT,ld be the total free energy per unit spin of a
system with the Hamiltonian(2.14). Then, taking into ac-
count the translational invariance symmetry, it is easy to see
that

kt̃','sRdl = −
]

] l
fb f̃sT,ldgl=0 = bJsd − 1dfkS0Se1

l − kS0Sed
lg.

s2.16d

Therefore, in order to calculate the average value oft̃','sRd
one needs either to know the finite-size free energy density
of an anisotropic system, or, what is much simpler, the
nearest-neighbor two-point correlations along the axes of the
isotropic finite system.

III. ANALYTICAL RESULTS

In this section we summarize our analytical results for the
two-dimensional Ising, for the spherical model with
2,d,4, and for the Gaussian model. Their derivation for
the Ising model is given in Appendix C, while ones for the
spherical model is given in Appendix D.

A. Two-dimensional Ising model

For the two-dimensional Ising model on a square lattice
with geometryL3M the lattice representation of the stress
tensor is well known for a long time[14,16]. In our nota-
tions, using Eqs.(2.11) and (2.12), we obtain

bJ8s1dFU d

dl
S ji,0sld

j',0sld
DU

l=0
G−1

=
bJf1 + sinhs2bJdg

2fsinhs2bJd − 2bJ coshs2bJd − 1g
. s3.1d

At the critical pointbc of the isotropic system one hasf15g

1 = sinhs2bcJd, s3.2d

and the right-hand side of the above equation simplifies es-
sentially becoming simply −1/s2Î2d. Therefore, atT=Tc,
the stress tensor reads

tx,xsi, jd =
1

2Î2
sSi,jSi,j+1 − Si,jSi+1,jd, s3.3d

which is exactly the form considered in Ref.f14g. In the limit
M→` at the critical pointTc of the bulk system one hasf14g

ktx,xl = −
p

6
cL−2, s3.4d

where c=1/2 is the so-called central charge of the Ising
model f12g. The Casimir amplitude isf12g

D = −
p

6
c, c =

1

2
. s3.5d

It is easy to see that close toTc the right-hand side of Eq.
s3.1d becomes

−
1

2Î2
S1 +

b − bc

bc
D + O„sb − bcd2

…. s3.6d

Sincen=1 for 2D Ising model, it is clear from Eq.s3.4d that
the contributions to the Casimir force due to the term pro-
portional to b−bc in the above expression will be of the
order ofL−3. Such contributions will be neglected. Therefore,
in the critical region of the finite system we conclude that the
stress tensor is given by

tx,xsi, jd =
1

2Î2
sSi,jSi,j+1 − Si,jSi+1,jd +

1

2
sbc − bdsĤ − Ĥbd.

s3.7d

One can interpret the variance of the stress tensor
Dtx,xsi , jd as a variance of a local measurement of the Casimir
force made near the pointsi , jd. For the leading behavior of
the variance atTc one then has[see Eq.(C6)]

Dtx,xsi, jd . 1 − 2/p. s3.8d

Definitely, in addition from the above nonuniversal part the
variance contains also universal parts that are negligible in
comparison with the nonuniversal one.

As we said above, we will interpretktx,xsi , jdl as a local
measurement of the Casimir force made near the pointsi , jd.
Let us imagine that we are collecting measurements from all
the points belonging to the “surface”s1, jd, j P f1, . . . ,Mg (in
the very same way one can consider the opposite “surface”
sL , jd, j P f1, . . . ,Mg). The surfaces are important because
they are the only place where in an experiment the Casimir
force is experimentally accessible. To characterize the force
measured on the whole surface, instead oftx,xsi , jd, one has to
considero j tx,xs1, jd. Taking, in a first approximation, any
local measurement to be independent from the other ones,
one obtains that
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Do
j

tx,xs1,jd , MDtx,xs1,1d . 0.363M , s3.9d

which implies that, indeed, in agreement withf13g,

sDbFC
t d2 ~ Ni

d−1 = sLi/add−1, s3.10d

whered=2.
An estimation can be also derived forDoi,j tx,xsi , jd. With

a variance of such a type one deals when, say, Monte Carlo
simulations of the force are performed. One obtains[see Eq.
(C10)]

Do
i,j

tx,xsi, jd =
1

2
F−

1

2
+

2

p
GML . 0.068ML. s3.11d

We again observe that the variance of the sum oftx,xsi , jd is
proportional to the total number of summands in this sum.
The coefficient of proportionality for 2D Ising model, when
the sum is over all spins in the finite system, turns out to be
0.068.

Unfortunately, as far as we are aware, the finite-size prop-
erties of the free energy of the two-dimensional anisotropic
Ising model under periodic boundary conditions are not
available forTÞTc. This makes the comparison of the direct
derivation of the force as a derivative of the finite-size scal-
ing excess free energy and as average of the operator(2.11)
a challenging task. Moreover the behavior of the finite-size
free energy of the isotropic system is only known for mod-
erate values of the scaling arguments[17]. Nevertheless,
from Ref. [17] one can extract the following results for the
scaling functions of the excess free energy and the Casimir
force.

(a) Excess free energy: The scaling function of the ex-
cess free energy is[7]

Xex = −
p

12
− po

i=2

` S1/2

i
DS x

2p
D2i

s1 − 2−2i+1dzs2i − 1d,

s3.12d

where −p,x,2p, and the scaling variable isx=8KctL.
(b) Casimir force: The scaling function of the Casimir

force XCasimir is related to that one of the excess free energy
via

XCasimir= Xexsxd − x
]

] x
Xexsxd. s3.13d

Then, from Eq.s3.12d, one immediately obtains

XCasimir= −
p

12
− po

i=2

` S1/2

i
D

3 S x

2p
D2i

s1 − 2ids1 − 2−2i+1dzs2i − 1d.

s3.14d

B. The spherical model

We consider a spherical model on ad-dimensional hyper-
cubic lattice LPZd, where L=L13L23 ¯ 3Ld. Let Li
=Niai , i =1, . . . ,d, whereNi is the number of spins andai is
the lattice constant along the axisei with ei being a unit
vector along that axis. With each lattice siter one associates
a real-valued spin variableSr which obey the constraint

o
rPL

kSr
2l = N, s3.15d

whereN=N1N2. . .Nd is the total number of spins in the sys-
tem. The average in Eq.s3.15d is with respect to the Hamil-
tonian of the model which is

bH = −
1

2
bo

r ,r8

Sr Jsr ,r 8dSr8 + so
r

Sr
2. s3.16d

In the current paper we will consider only the case
of nearest-neighbor interactions, i.e., we takeJsr ,r 8d
=Jsur −r 8du=Jj, if r −r 8= ±ej, i =1, . . . ,d, andJsr ,r 8d=0 oth-
erwise.

For such a model it can be shown[7] that under periodic
boundary conditions, the free energy of the model(per unit
spin) is given by

bfsK,Nd =
1

2
Fln

K

2p
− KG

+ sup
w.0
H−

1

2
Kw+

1

2N
o

kPBL

lnFw + 1 −
Ĵskd

Ĵs0d
GJ ,

s3.17d

while the two-point correlation function is

Gsr ,K,Nd =
1

KN
o

kPBL

eik·r

w + 1 − Ĵskd/Ĵs0d
. s3.18d

Here s=Ksw+1d /2, K=bĴs0d, where Ĵskd is given by the
Fourier transform of the interaction

Ĵskd = o
r

Jsr deik·r , s3.19d

and the wave vectork =hk1,k2, . . . ,kdjPBL is with compo-
nentski =2pni /Li, whereni =1, . . . ,Ni, i =1, . . . ,d. The equa-
tion for the spherical fieldw reads

1

N
o

kPBL

1

w + 1 − Ĵskd/Ĵs0d
= K, s3.20d

which leads immediately toGs0,t ,Nd=1.
For nearest-neighbor anisotropic interactions it can be

shown that[see Eq.(D16)]

j j

ji
=Îbj

bi
=ÎJj

Ji
, s3.21d

where j j is the correlation length in directionj , and bj
=Jj /o j=1

d Jj, which leads to the following explicit form of the
stress tensor within the spherical modelfsee Eq.sD18dg:
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t''sRd =
bJ

d/2Fo
k=1

d−1

SRSR+ek
− sd − 1dSRSR+edG

+
1

dn
sbc − bdsĤ − Ĥbd. s3.22d

HereĤ is the Hamiltoniansnormalized per unit particled of

the finite system andĤb is that one of the infinite system.

1. Evaluation of the finite-size excess free energy
of the anisotropic system

First, one can demonstrate that the critical coupling of the
anisotropic bulk system is[see Eq.(D30)]

Kc ; 2bco
j=1

d

Jj = Wds0ubd =E
0

`

dxp
j=1

d

e−xbjI0sxbjd.

s3.23d

Then, close toK=Kc, when 2,d,4, for the scaling form of
the excessfree energybsf − fbd sper spind in the limit of a
film geometry N1,N2, . . . ,Nd−1→` one obtainsfsee Eq.
sD35dg

bffsK,N'ubd − fbsKubdg

=H1

4
x1sy − y`d

−
1

2

Gs− d/2d
s4pdd/2 Sb'

bi
Dsd−1d/2

syd/2 − y`
d/2d

−
2

s2pdd/2Sb'

bi
Dsd−1d/2

yd/4o
q=1

`
Kd/2sqÎyd

qd/2 JN'
−d.

s3.24d

In the above equation

x1 = b'sKc − KdN'
1/n, n =

1

d − 2
s3.25d

is the temperature scaling variable,y`=2wbN'
2 /b' is the so-

lution of the bulk spherical field equationfsee Eq.sD37dg

−
1

2
x1 =

Gs1 − d/2d
s4pdd/2 Sb'

bi
Dsd−1d/2

y`
d/2−1, s3.26d

while y=2wN'
2 /b' is the solution of the finite-size spherical

field equationfsee Eq.sD38dg

−
1

2
x1 =

Gs1 − d/2d
s4pdd/2 Sb'

bi
Dsd−1d/2

yd/2−1

+
2

s2pdd/2Sb'

bi
Dsd−1d/2

yd/4−1/2o
q=1

`
Kd/2−1sqÎyd

qd/2−1 .

s3.27d

For the Casimir force one derivesfsee Eq.sD40dg

bFCasimir= N'
−dH1

4
x1sy − y`d − sd − 1dSb'

bi
Dsd−1d/2

3F1

2

Gs− d/2d
s4pdd/2 syd/2 − y`

d/2d

+
2

s2pdd/2yd/4o
q=1

`
Kd/2sqÎyd

qd/2 GJ , s3.28d

whereas for the Casimir amplitudesD we derive fsee Eq.
sD44dg

D = −
2

ds2pdd/2yc
d/4+1/2o

q=1

`
Kd/2+1sqÎycd

qd/2−1 , s3.29d

with bcFCasimirsKc,L'd=sd−1dDL'
−d. The exact value ofyc

and D in an explicit form is only known ford=3. Then

yc = 4 ln2fs1 +Î5d/2g s3.30d

sthis value is well known and seems that has been derived for
the first time in Ref.f18gd, and, then, one obtainsf19g

D = −
2zs3d
5p

. s3.31d

This is the only exactly known Casimir amplitude for a
three-dimensional system.

2. Evaluation of the average value of the stress tensor

For the scaling form of the average value of the stress
tensor one derives[see Eq.(D54)]

kt''sRdl = −H2sd − 1d
s2pdd/2 Fyd/4o

q=1

`
Kd/2sqÎyd

qd/2

+
1

d
ysd+2d/4o

q=1

`
Kd/2−1sqÎyd

qd/2−1 G
+

sd − 2d
4d

x1sy − y`dJN'
−d. s3.32d

It is also possible to demonstratessee Appendix Dd that the
above expression is equivalent tobFCasimir given by Eq.
s3.28d for the isotropic systemswhenbi=b'd, i.e., indeed,

kt''sRdl = bFCasimir s3.33d

for the spherical model.

3. Evaluation of the variance of the stress tensor

For the variance of the Casimir force in the spherical
model atT=Tc one obtains[see Eq.(3.34)]

Dt',' ; D o
RPL

t','sRd . 0.107N'Ni
2. s3.34d

This will be also the leading result everywhere in the critical
region, since it is coming from the nonsingular part of the
free energy aroundT=Tc an analytical expansion should be
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possible. It is also clear that if the summation overR in Eq.
s3.34d is not over the total number of particles inL, which is
N'Ni

d−1, but over, say, all the spins from one of the bound-
aries, then the corresponding variance will be proportional to
the total number of spins there, i.e.,

sDbFC
t d2 ~ Ni

d−1 = sLi/add−1, s3.35d

exactly as it has been found in Ref.f13g, see Eq.s1.7d.

C. The Gaussian model

In order to simplify the notations we define the Gaussian
model in the same way that we have defined the spherical
model. Actually the spherical model is a Gaussian-type
model with one additional constraint, given by Eq.(3.15)
fixing the average length of all the spins in the system. To be
more precise, we suppose that the HamiltonianH of the
model is again given by Eq.(3.16), where, as before,s

=Ks1+wd /2 andK=bJ̃s0d. The only difference is that now
Eq. (3.15) is missing andw is not a quantity whose behavior
has to be derived from it, but a parameter which describes
the deviation from the critical point, i.e.,w=sbc−bd /b. As a
result, the free energy density of the model becomes

bfsK,Nd =
1

2
Fln

K

2p
− KG + Usw,Nd −

1

2
Kw, s3.36d

where Usw,Nd is given by Eq.sD3d, while the two-point
correlation function is still determined by Eq.s3.18d. Then,
for a system with anisotropic short-range interaction, pro-
ceeding in the same way as in Sec. III B, we derive that Eqs.
sD13d–sD17d are still valid, wherefrom we conclude that in
the Gaussian model the stress tensor again is

t''sRd =
bJ

d/2Fo
k=1

d−1

SRSR+ek
− sd − 1dSRSR+edG

+
1

dn
sbc − bdsĤ − Ĥbd, s3.37d

whereĤ is the Hamiltoniansnormalized per unit particled of

the finite andĤb of the infinite model.

1. Evaluation of the finite-size excess free energy
of the anisotropic system

The analysis of the excess free energy can be performed
along the same lines as in the case of a spherical model. For
example, forUsw,Nd Eqs. (D19)–(D23) and (D28) are still
valid. On the basis of these equations we immediately obtain
that in the case of a Gaussian model the excess free energy in
a film geometry is

bffsK,N'ubd − fbsKubdg

= −
2

s2pdd/2Sb'

bi
Dsd−1d/2

yd/4o
q=1

`
Kd/2sqÎyd

qd/2 N'
−d. s3.38d

In the above equation the temperature scaling variable is

y = 2wN'
1/n/b', s3.39d

wheren=1/2 andw=bc/b−1.
From Eq.(3.38), using the property of theKnsxd functions

[20] that

]

] y
fynKnsaydg = − aynKn−1sayd, s3.40d

we immediately derive that the Casimir force in such an
anisotropic Gaussian model is given by

bFCasimir= −
2

s2pdd/2Sb'

bi
Dsd−1d/2

N'
−d

3 Hsd − 1dyd/4o
q=1

`
Kd/2sqÎyd

qd/2

+ yd/4+1/2o
q=1

`
Kd/2−1sqÎyd

qd/2−1 J . s3.41d

Note that despite the similarities with the spherical model
both the excess free energy and the Casimir force differs
essentially for the two models. Let us demonstrate that even
more explicitly on the example of the Casimir amplitudesD.
We are reminded that in the spherical model they are given,
for 2,d,4, by Eq. s3.29d whereyc is the solution of the
spherical field equation atb=bc. In explicit form we have
been able to solve this equation and to calculateD only for
d=3. The situation with the Gaussian model is much sim-
pler. At the critical pointb=bc one hasy=0, and, therefore,
from Eq. s3.41d, or Eq. s3.38d, we obtainsin the isotropic
systemd

D = −
Gsd/2dzsdd

pd/2 . s3.42d

So, ford=3 one hasD=−zs3d /2p and, therefore,

Dspherical model=
4
5DGaussian model, d = 3. s3.43d

2. Evaluation of the average value of the stress tensor

Having in mind thatu=s] /]bdsbfd and using Eq.(3.40),
for the difference of the finite-size and bulk internal energy
densities one can easily derive from Eqs.(3.36) and (3.38),

u − ub = −
bc/b

s2pdd/2

yd/4+1/2

sbc − bdoq=1

`
Kd/2−1sqÎyd

qd/2−1 N'
−d,

s3.44d

wherey=2dwN'
2 andw=bc/b−1. Next, from Eq.s3.18d, or

Eq. s3.36d, for the stress tensors3.37d of the Gaussian model
we derive that

CRITICAL CASIMIR FORCE AND ITS FLUCTUATIONS… PHYSICAL REVIEW E 69, 046119(2004)

046119-7



kt''sRdl =
d − 1

d

1

N o
kPBL

cossk1a1d − cosskdadd

ds1 + wd − o
j=1

d

cosskjajd

−
bc/b

d

2

s2pdd/2yd/4+1/2o
q=1

`
Kd/2−1sqÎyd

qd/2−1 N'
−d,

s3.45d

where we have taken into account thatn=1/2. Applying to
the first row in the above equation the same way of acting as
in the case of the spherical model, and replacingbc/b by 1
ssince we are close to the critical pointd, we derive

kt''sRdl = −
2

ds2pdd/2Hyd/4+1/2o
q=1

`
Kd/2−1sqÎyd

qd/2−1

+ sd − 1dysd+2d/4o
q=1

`
K1+d/2sqÎyd

qd/2−1 JN'
−d.

s3.46d

Now it only remains to show that the right-hand side of the
above equation is indeed equal to the right-hand side of Eq.
s3.41d sfor b'=bid, which gives the Casimir force calculated
in a direct manner as a derivative of the finite-size free en-
ergy with respect to the size of the system. In order to dem-
onstrate this, let us note that, according to the identitysD43d,

Kd/2+1sxd = Kd/2−1sxd +
d

x
Kd/2sxd. s3.47d

Inserting Eq.s3.47d in Eq. s3.46d and comparing the result
with Eq. s3.41d, we conclude that, indeed,

kt''sRdl = bFCasimir s3.48d

for the Gaussian model.

3. Evaluation of the variance of the stress tensor

For the variance of the stress tensor all the equations from
the corresponding part of Appendix D for the spherical
model are still valid. That is because the leading contribution
of the variance is stemming from the regular part of the bulk
free energyUbs0ubd [see Eq.(D25)] evaluated atT=Tc [see
Eq. (D65)]. This observation leads to the conclusion that, as
in the spherical model case,

Dt',' ; D o
RPL

t','sRd . 0.107N'Ni
2, s3.49d

where the summation is over all the spins of the system.

IV. MONTE CARLO RESULTS

The foundation of our Monte Carlo investigations of the
critical Casimir force is laid by Eqs.(2.11) and(B8), respec-
tively. Apart from the a priori unknown coefficient
J8s1d /R8s0d and the bulk energy densityub the numerical
evaluation of Eq.(2.11) is absolutely straightforward and
apart from usual algorithmic precautions in the critical re-

gime no special techniques are required. However, as has
become obvious in, e.g., Eq.(3.11), the statistical error of the
estimate will increase with the system size if the number of
Monte Carlo sweeps is kept constant. In order to approach
the asymptotic regime larger system sizes, say,Ni=120 and
N'=20 lattice sites ind=3 are required which means that a
reliable estimation of the Casimir force remains computa-
tionally demanding as far as the required CPU time is con-
cerned.

We employ a hybrid algorithm[21] which consists of Me-
tropolis [22] and single cluster updates[23] for the Ising
model, for XY, and Heisenberg simulations over-relaxation
updates[24] are employed as a third update method. Cluster
updates are only used in the immediate vicinity of the critical
point, e.g., for −0.02ø tø0.02 for the system size indicated
above. Typically, we have performed between 4.83106 and
9.63106 Monte Carlo steps per spin. In order to cope with
the high demand of CPU time for larger systems we have
performed part of our simulation in parallel on two-processor
Intel Xeon system and on a four-processor DEC Alpha sys-
tem using the OpenMP Standard for SMP programming. A
few runs have also been performed on a two-processor AMD
Opteron system.

We first investigated the energy dependent contribution
fbcs0d−bgsu−ubd to Eqs. (2.11) and (B8) by a series of
simulations on a cubic geometry forNi=N'=20, . . . ,80 in
order to obtain reliable estimates for the bulk energy density
ub. It turns out that within the range −0.2ø tø0.2 of reduced
temperatures, various aspect ratiosNi /N'=3,4,6,8, and
several system sizesNi=60, . . . ,120 the energy dependent
contributionfbcs0d−bgsu−ubd /dn is always negligible. As a
typical result we obtained that for forces of the order of 10−1

with a statistical error in the range 10−2–10−3, the energy
contribution fbcs0d−bgsu−ubd /dn remains in the range
10−4–10−5 for all models. The prefactorJ8s1d /R8s0d roughly
evaluates toJ8s1d /R8s0d.0.3 in all cases. We therefore con-
clude that we can safely ignore the energy contribution to the
Casimir force for our Monte Carlo investigations of the
Ising, theXY, and the Heisenberg model in three dimensions.

A. Three-dimensional Ising model

As expounded above, we have neglected the energy de-
pendent contribution to Eq.(B8) for our Monte Carlo evalu-
ations of the scaling functionupersxd, x= tsL' /ad1/n of the
Casimir force. From extended simulations for various aspect
ratiosNi /N'=3, 4, 6, and 8 we have arrived at the conclu-
sion that corrections toupersxd due to finite aspect ratio are
by far negligible within the statistical error forNi /N'=6. In
fact, our results forNi /N'=4 can hardly be distinguished
from corresponding results for larger aspect ratios. We have
therefore fixed the aspect ratio to the value 6 and performed
simulations forN'=16, 20, 24, and 30. The resulting scal-
ing plot for upersxd is shown in Fig. 1.

For TùTc finite-size scaling works very well, whereas for
T,Tc data collapse forN'=30 is not as good. However, the
data collapse improves upon increasing the statistics and so
we have performed 9.63106 Monte Carlo steps per lattice
site for the largest latticeN'=30 for T,Tc. With the esti-
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maten=0.63 for the correlation length exponent we finally
obtain scaling within two standard deviations. The scaling
function upersxd decays exponentially forx→ ±` and has its
minimum below Tc. However, due to the magnitude of the
statistical error its location cannot be determined accurately
enough to excludex=0 with reasonable certainty. The Monte
Carlo data for the Casimir force are not normalized due to
thea priori unknown prefactorJ8s1d /R8s0d in Eq. (B8). The
data displayed in Fig. 1 have therefore been scaled in such a
way thatupers0d;2Dper,n=1 is given by the best known esti-
mateDper,n=1.−0.153 for the Casimir amplitudeDper,n=1 for
the three-dimensional Ising model[25].

The scaling function displayed in Fig. 1 has been obtained
from Eq.(B8), where a spatial average over all lattice sites is
performed. As expounded in Sec. III(see also Ref.[14]) this
leads to a certain size dependence of thevariance of the
stress tensor as, e.g., given by Eq.(3.34) for the spherical
model and by Eq.(3.49) for the Gaussian model. In order to
investigate the variance also for the Ising model ind=3 we
have recorded the distribution function of the stress tensor
during our Monte Carlo simulations. It turns out that the
shape of the distribution function is captured by a Gaussian
distribution to a very high degree of accuracy also for the
Ising model(see Ref.[13]). We are therefore able to extract
the variance of the stress tensor average from a least square
fit of the measured distribution function to a Gaussian, where
the variance is one of the fit parameters. Guided by Eqs.
(3.34) and (3.49) we have normalized the variance toN'

2 in
order to obtain a linear law at fixed aspect ratio. Our results
for Ni /N'=6 are displayed in Fig. 2.

The functional dependence is indeed linear and the slope
at t=0 sT=Tcd is 1.55 as compared to 0.107sNi /N'd2

.3.85 forNi /N'=6 according to Eqs.(3.34) and(3.49) for
the spherical and the Gaussian model. The strict linearity
also prevails for other temperatures in the scaling regime as

shown in Fig. 2. The quadratic dependence ofDt',' /N'
2 on

the aspect ratio has also been confirmed for the Ising model
in d=3 at T=Tc from simulations at different aspect ratios
(not shown).

B. Three-dimensionalXY model

In accordance with our findings for the Ising model we
find that the value 6 for the aspect ratio of the simulation
lattice is also a good choice for theXY model. We have
performed simulations forN'=16, 20, 24, and 30, where
4.83106 Monte Carlo steps per lattice site have been per-
formed for all lattice sizes. It turns out that the energy de-
pendent contribution to Eq.(B8) can again be disregarded
within the statistical error obtained from the simulations.

As in the Ising case we determine the normalization factor
J8s1d /R8s0d in Eq. (B8) from the requirementupers0d
=2Dper,n=2. Unfortunately, all estimates forDper,n=2, which
are currently available, are based on the« expansions quoted,
e.g., in Ref.[6]. Independent Monte Carlo estimates for the
Casimir amplitudes of theXY model do not exist and rigor-
ous results for the two-dimensionalXY model are limited to
temperatures below the Kosterlitz-Thouless temperature,
where the model renormalizes towards the two-dimensional
Gaussian fixed point. The Gaussian model ind=2 is charac-
terized by the central chargec=1 and therefore the Casimir
amplitude for the two-dimensionalXY model in the low tem-
perature limit is given by Dper,n=2,d=2=−pc/6=−p /6
.−0.5236[26].

Apparently, the« expansion underestimates the magni-
tude of the Casimir amplitudeDper,n=1 of the critical Ising
model in d=3, i.e., «=1. From the structure of the critical
Ginzburg-Landauf4 theory and the nature of the two-loop
approximation to the Casimir amplitude we expect that the«
expansion will also underestimate the magnitude ofDper,n for
anyn. This leads us to the conclusion that the« expansion of

FIG. 1. Scaling functionupersxd of the Casimir force for thed
=3 Ising model in a slab geometry for periodic boundary conditions
as a function of the scaling variablex= tN'

1/n, whereN'=L' /a is
the number of lattice layers. The aspect ratio is chosen asNi /N'

=6 (see main text). Finite-size scaling according to our expectation
is confirmed within two standard deviations, wheren=0.63 has
been chosen. The vertical scale has been adjusted according to the
estimateupers0d;2Dper,n=1=−0.306(see Ref.[25]). The error bars
displayed here correspond to one standard deviation.

FIG. 2. VarianceDt',' of the stress tensor for the Ising model
in d=3 [see Eqs.(3.34) and (3.49)], normalized toN'

2 at fixed
aspect ratioNi /N'=6 as a function ofN' for different reduced
temperaturest in the critical regime. The behavior is linear as indi-
cated by the straight lines connecting the data points. Their slopes
have been evaluated as 1.39 fort=−0.01, 1.55 fort=0, and 1.61 for
t=0.01. The statistical error of the data(one standard deviation) is
smaller than the symbol size.
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the ratio

Dper,n

Dper,n=1
= nF1 −

5

4
«Sn + 2

n + 8
−

1

3
D + Os«2dG s4.1d

is more accurate ind=3 than the« expansion for numerator
and denominator individuallyssee Ref.f6gd. We therefore
adopt the approximation

Dper,n . − 0.153nF1 −
5

4
Sn + 2

n + 8
−

1

3
DG s4.2d

as our estimate forDper,n in d=3 in the following, where
Dper,n=1=−0.153ssee aboved has been used. From Eq.s4.2d
we then have

Dper,2 . − 0.28 s4.3d

for the three-dimensionalXY model. The resulting scaling
plot for upersxd is shown in Fig. 3.

For TùTc finite-size scaling works very well, whereas for
T,Tc data collapse forN'=30 is again not as good. How-
ever, the data collapse is still acceptable within two standard
deviations, so we refrain from performing additional runs
here. The scaling functionupersxd decays exponentially
aboveTc for x→` and displays a minimum belowTc. Un-
like the Ising model theXY model exhibits long-ranged cor-
relations also belowTc (Goldstone modes) which are a
prominent feature in Fig. 3. The scaling functionupersx
→−`d saturates at about half its minimum value and does no
longer decay to zero.

We have also evaluated the size dependence of the vari-
ance of the stress tensor for theXY model along the lines of
the previous analysis for the Ising model. The distribution

function of the stress tensor is again given by a Gaussian to
a very high accuracy. The corresponding result forDt',' /N'

2

is shown in Fig. 4.
The functional dependence is again linear and the slope at

t=0 sT=Tcd is 2.78 as compared to 0.107sNi /N'd2.3.85
[see preceding section and Eqs.(3.34) and (3.49)] for the
spherical and the Gaussian model. The strict linearity also
prevails for other temperatures in the scaling regime as
shown in Fig. 4. In summary theXY model behaves just as
the Ising model with respect to the variance of the stress
tensor.

C. Three-dimensional Heisenberg model

We have repeated the simulations finally for the Heisen-
berg model ind=3 with the same geometric and statistical
data as for theXY model for the same reasons discussed
above. We note again that the energy dependent contribution
to Eq. (B8) can be disregarded within the statistical error
obtained from the simulations.

The normalization factorJ8s1d /R8s0d in Eq. (B8) is deter-
mined from the requirementupers0d=2Dper,n=3, where the es-
timate

Dper,3 . − 0.39 s4.4d

used here has been obtained from Eq.s4.2d for n=3. The
resulting scaling plot forupersxd is shown in Fig. 5. ForT
ùTc finite-size scaling works very well, whereas forT,Tc
the scatter of the date is larger than for theXY model. How-
ever, the data collapse is still acceptable within two standard
deviations. The qualitative shape of the scaling function
upersxd is the same as for theXY model. The Heisenberg
model also exhibits long-ranged correlations belowTc sGold-
stone modesd which is a prominent feature in Fig. 5. The
scaling functionupersx→−`d saturates at about three quar-
ters of its minimum value.

FIG. 3. Scaling functionupersxd of the Casimir force for thed
=3XY model in a slab geometry for periodic boundary conditions as
a function of the scaling variablex= tN'

1/n, whereN'=L' /a is the
number of lattice layers. The aspect ratio is chosen asNi /N'=6
(see main text). Finite-size scaling according to our expectation is
confirmed within two standard deviations, wheren=0.67 has been
chosen. The vertical scale has been adjusted according to the esti-
mateupers0d;2Dper,n=2=−0.56(see main text). The error bars dis-
played here correspond to one standard deviation.

FIG. 4. VarianceDt',' of the stress tensor for theXY model in
d=3 [see Eqs.(3.34) and(3.49)], normalized toN'

2 at fixed aspect
ratio Ni /N'=6 as a function ofN' for different reduced tempera-
turest in the critical regime. The behavior is linear as indicated by
the straight lines connecting the data points. Their slopes have been
evaluated as 2.63 fort=−0.01, 2.78 fort=0, and 2.86 fort=0.01.
The statistical error of the data(one standard deviation) is smaller
than the symbol size.
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Finally, we have evaluated the size dependence of the
variance of the stress tensor for the Heisenberg model along
the lines of the previous analyses for the Ising and theXY
model. As before the distribution function of the stress tensor
is given by a Gaussian to a very high accuracy. The corre-
sponding result forDt',' /N'

2 is shown in Fig. 6.
The functional dependence is linear and the slope att=0

sT=Tcd is 3.92 as compared to 0.107sNi /N'd2.3.85 [see
previous sections and Eqs.(3.34) and (3.49)] for the spheri-
cal and the Gaussian model. The strict linearity also prevails
for other temperatures in the scaling regime as shown in Fig.

4. In summary the Heisenberg model behaves just as the
Ising and theXY model with respect to the variance of the
stress tensor.

Apart from different slopes there are no specific differ-
ences in the behavior of the variance of the stress tensor for
all spin models investigated here ind=3. However, the scal-
ing function of the Casimir force does display specific dif-
ferences as one may expect from the presence and the in-
creasing dominance of Goldstone modes belowTc.

V. SUMMARY AND CONCLUDING REMARKS

In the current paper an operator—the stress tensor
operator—on a finite lattice system has been constructed so
that its average value gives the universal behavior of the
thermodynamic Casimir force near the critical point of a sys-
tem with short-ranged interactions[see Eq.(2.11)]. The defi-
nition of the operator holds in systems in which the hyper-
scaling is valid [for Osnd models that are systems with
dimensionality 2,d,4]. Its explicit form for the two-
dimensional Ising model is[see Eq.(3.7)]

tx,xsi, jd =
1

2Î2
sSi,jSi,j+1 − Si,jSi+1,jd +

1

2
sbc − bdsĤ − Ĥbd,

s5.1d

while that one for thed-dimensionals2,d,4d spherical
and thed-dimensional Gaussian models isfsee Eqs.s3.22d
and s3.37d, respectivelyg

t''sRd =
bJ

d/2Fo
k=1

d−1

SRSR+ek
− sd − 1dSRSR+edG

+
1

dn
sbc − bdsĤ − Ĥbd. s5.2d

HereĤ is the Hamiltoniansnormalized per unit particled of

the finite system andĤb is that one of the infinite system.
For the spherical model one has to take into account thatn
=1/sd−2d, while n=1/2 for theGaussian model. In the ex-
ample of the two-dimensional Ising model, the spherical
model with 2,d,4, and the Gaussian model we have veri-
fied via exact calculations the correctness of the above pre-
sentation. They reproduce the correct values of the Casimir
amplitudes atT=Tc and, for the spherical and the Gaussian
models the expressions for the force derived via the excess
free energy and via averaging the stress tensor operator are
giving the same results. The amplitudes and the force near
the critical point of the bulk system turns out, as expected, to
be universal and is in full accordance with the finite-size
scaling theory. An evaluation of the variance of the so de-
fined Casimir force has been also performed. If the summa-
tion is performed over all the particles within the system the
corresponding result for the two-dimensional Ising model is
fsee Eq.s3.11dg

FIG. 5. Scaling functionupersxd of the Casimir force for thed
=3 Heisenberg model in a slab geometry for periodic boundary
conditions as a function of the scaling variablex= tN'

1/n, where
N'=L' /a is the number of lattice layers. The aspect ratio is chosen
as Ni /N'=6. Finite-size scaling according to our expectation is
confirmed within two standard deviations, wheren=0.71 has been
chosen. The vertical scale has been adjusted according to the esti-
mateupers0d;2Dper,n=3=−0.78(see main text). The error bars dis-
played here correspond to one standard deviation.

FIG. 6. VarianceDt',' of the stress tensor for the Heisenberg
model in d=3 [see Eqs.(3.34) and (3.49)], normalized toN'

2 at
fixed aspect ratioNi /N'=6 as a function ofN' for different re-
duced temperaturest in the critical regime. The behavior is linear as
indicated by the straight lines connecting the data points. Their
slopes have been evaluated as 3.77 fort=−0.01, 3.92 fort=0, and
4.03 for t=0.01. The statistical error of the data(one standard de-
viation) is smaller than the symbol size.
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Do
i,j

tx,xsi, jd =
1

2
F−

1

2
+

2

p
GN'Ni . 0.068N'Ni, s5.3d

while that one for the three-dimensional spherical and the
Gaussian models isfsee Eqs.s3.34d and s3.49dg

Dt',' ; D o
RPL

t','sRd . 0.107N'Ni
2. s5.4d

The average values of the above stress tensor operator are

Ko
i,j

tx,xsi, jdL = −
p

12N'
2 sN'Nid, s5.5d

for the two-dimensional Ising modelfsee Eq.s3.4dg,

kt','l ; K o
RPL

t','sRdL = −
4zs3d
5pN'

3 sN'Ni
2d s5.6d

.−
0.306

N'
3 sN'Ni

2d, s5.7d

for the three-dimensional spherical modelfsee Eq.s3.31dg,
and

kt','l ; K o
RPL

t','sRdL = −
zs3d

2pN'
3 sN'Ni

2d s5.8d

.−
0.382

N'
3 sN'Ni

2d, s5.9d

for the three-dimensional Gaussian modelfsee Eq.s3.42dg.
For the “noise-over-signal” ratio

rV =
ÎDt','

kt','l
s5.10d

of the so-measured force from the above results one then
derives

rV . 0.159SN'

Ni
D1/2

N', s5.11d

for the Ising model,

rV . 1.069SN'

Ni
DN'

3/2, s5.12d

for the spherical model, and

rV . 0.856SN'

Ni
DN'

3/2, s5.13d

for the Gaussian model. In the general case of a
d-dimensional critical system the corresponding ratio at the
bulk critical point is

rV =
D

sd − 1dD
SN'

Ni
Dsd−1d/2

N'
d/2, s5.14d

where D=DsT→Tcd is a nonuniversal constant that de-
scribes the behavior of the variance of the tensor, i.e.,

Dt',' .
D2sTd

b2 N'Ni
d−1, s5.15d

whereDsTd is a slowly varying nonuniversal function ofT
close toTc andD is the usual Casimir amplitude.

Based on the proposed operator, Monte Carlo calculations
have been performed and the Casimir force scaling functions
have been determined for the three-dimensional Ising,XY,
and Heisenberg models. The scaling functions decay expo-
nentially to zero above the critical temperature. The same
happens for the Ising model also belowTc, while for theXY
and Heisenberg models they tend to a constant because of the
existence of the Goldstone modes in this regime in these two
models. Our results forOsnd spin models,n=1,2,3 ,̀ , are
summarized in Fig. 7. The data forupersxd are normalized to
n in order to obtain a direct comparison with the spherical
limit, for which the exact result is shown.

Our results confirm that one has to take into account the
ratio between the thickness of the film and its lateral dimen-
sions, when planning the settlement of an experiment, in
order to achieve the desired noise-over-signal ratio. The nu-
merical results that are presented can be considered as a type
of such measuring of the force by Monte Carlo methods.
They demonstrate clearly that high accuracy in such type of
measurement of the force is indeed possible to achieve.
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APPENDIX A: THE CORRELATION LENGTH
AMPLITUDE RELATION

The coordinate transformation given by Eq.(2.7) removes
the anisotropy from the spin model defined by Eq.(2.1) in

FIG. 7. Scaling functionupersxd /n of the Casimir force ind=3
in a slab geometry for periodic boundary conditions as a function of
the scaling variablex= tN'

1/n, where N'=L' /a is the number of
lattice layers. Monte Carlo data are shown for the Ising model
s+,n=1d, the XY model s3 ,n=2d, and the Heisenberg model
s* , n=3d with lattice sizeNi=180 andN'=30. The solid line shows
upersxd /n in the spherical limitsn→`d.
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the vicinity of the critical point. From the coordinate trans-
formation and the principle of two scale factor universality a
relation between the correlation length amplitudesji,0sld and
j',0sld [see Eq.(2.6)] can be established, which will be de-
rived in the following under the assumption that hyperscal-
ing is also valid, e.g., for 2,d,4 and short-ranged interac-
tions.

According to the coordinate transformation given by Eq.
(2.7) we obtainji8=ji and j'8 =Rsldj'=ji [see Eq.(2.8)],
i.e., the parallel correlation lengthji of the (untransformed)
anisotropic system remains as the only correlation length of
the (transformed) isotropic system. According to the prin-
ciples of two scale factor universality and hyperscaling the
singular part of the(bulk) free energy densityfb,sing8 std of the
transformed spin system can then be written in the form

fb,sing8 sl,td = Afjisl,tdg−d, sA1d

wheret=bcsld /b−1 is the reduced temperature andA is a
universalamplitude. Strictly speaking, one has to distinguish
betweentwo universal amplitudesA+ for T.Tc andA− for
T,Tc. We disregard this distinction in Eq.sA1d in order to
simplify the notation. EquationsA1d is valid for T.Tc and
T,Tc separately, provided, the correlation length remains
finite for T,Tc. According to Eq.s2.7d the unit volumev of
the system transforms as

v8 = Rsldv sA2d

and therefore we find

fb,singsl,td = Rsldfb,sing8 sl,td

= ARsldfjisl,tdg−d

= ARsldfj'8 sl,tdg−1fji8sl,tdg−sd−1d

= Afj'sl,tdg−1fjisl,tdg−sd−1d sA3d

for the singular part of the bulk free energy density of the
anisotropic, i.e., the untransformed system.

According to Eq.(2.6) we have the alternative form

fb,singsl,td = Afj',0sldg−1fji,0sldg−sd−1dutudn

; Asldubcsld/b − 1udn sA4d

for Eq. sA3d. The nonuniversal amplitudesAsld and bcsld
must be independent of the labeling of the lattice axes, i.e.,
the direction which is chosen to be the “perpendicular” one.
From this symmetry argument and the particular choice of
the coupling constantsJisld andJ'sld in Eq. s2.2d we have
already obtainedb8sl=0d=0 in Eq. s2.5d. Likewise, we ob-
tain A8sl=0d=0 from this symmetry argument. We therefore
conclude that

U d

dl
fb,singsl,tdU

l=0
= 0 sA5d

and that due to

Asld = Afj',0sldg−1fji,0sldg−sd−1d, sA6d

one also concludes fromA8sl=0d=0 that

U d

dl
hfj',0sldg−1fji,0sldg−sd−1djU

l=0
= 0. sA7d

From Eq. sA7d we finally obtain the important correlation
length amplitude relation

sd − 1dU d

dl
ji,0sldU

l=0
+ U d

dl
j',0sldU

l=0
= 0, sA8d

which is needed in the derivation of the stress tensor repre-
sentation of the Casimir force for lattice spin models pre-
sented in Appendix B.

APPENDIX B: THE STRESS TENSOR REPRESENTATION
OF THE CASIMIR FORCE

The derivative of the excess free energyfex with respect
to l at the isotropic pointl=0 is given by Eq.(2.9) in the
main text. The relation between Eq.(2.9) and the Casimir
force defined by Eq.(1.1) yields a lattice expression of the
stress tensor. This will be investigated here in the critical
regime. Above the critical temperature all expressions will be
exponentially small and can be neglected. Below the critical
temperature Goldstone modes inOsNù2d systems also give
rise to algebraically decaying finite-size effects, which will
not be considered here.

In order to find the relation between Eqs.(1.1) and (2.9)
we use the coordinate transformation given by Eq.(2.7) and
note that unlike the unit volumev [see Eq.(A2)] the unit
area remainsinvariant under Eq.(2.7). We recall that in the
transformed (isotropic) system we havej',08 sld=ji,08 sld
=ji,0sld and we therefore find

Udfex

dl
U

l=0
= Udfex8

dl
U

l=0

= U ] fex8

] L'8
U

l=0

UdL'8

dl
U

l=0
+ U ] fex8

] j',08
U

l=0

Udj',08

dl
U

l=0

= − bFCasimirR8s0dL' + U ] fex8

] j',08
U

l=0

Udj',08

dl
U

l=0
,

sB1d

where Eqs.s1.1d ands2.8d have been used. In order to evalu-
ate the derivative]fex8 /]j',08 in the critical regime, we use
the critical finite-size scaling form

fex8 st,L'8 d = L'8
−sd−1dgex8 ftsL'8 /j',08 d1/ng, sB2d

and disregard the exponentially small contributions to Eq.
sB1d from the regular part of the excess free energy. Note
that for periodic boundary conditions the free energy of the
finite system f8st ,L'8 d can be decomposed, as usual, in a
regularf reg8 st ,L'8 d and a singularfsing8 st ,L'8 d parts, where the
regular part f reg8 st ,L'8 d can be taken to be equalsup to,
eventually, exponentially small correctionsd to that one of
the infinite system, i.e.,f reg8 st ,L'8 d= f reg8 st ,`d f11g. That is
why, for the periodic boundary conditions, the above
equationsB2d is valid for thetotal excess free energysand
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not only for its singular partd. From Eq.sB2d, we immedi-
ately obtain

U ] fex8

] j',08
U

l=0

= −
t

nj0

] fex8

] t
, sB3d

where all terms on the right-hand side of Eq.sB3d have al-
ready been evaluated atl=0. To further evaluate Eq.sB3d
we note that the excess internal energyuex is given by

uex =
] fex

] b
= −

bcs0d
b2

] fex

] t
. sB4d

In the vicinity of b=bcs0d, Eq. sB3d can be rewritten as

U ] fex8

] j',08
U

l=0

=
1

nj0
fbcs0d − bguex. sB5d

In order to evaluate the derivativedj',08 /dlul=0 in Eq. sB1d
we note that according to Eq.s2.7d we have j',08 sld
=ji,0sld. From the definition ofRsld given by Eq.s2.8d we
find by taking the derivativeR8sld with respect tol at l
=0,

R8s0d =
1

j0
FUdji,0

dl
U

l=0
− Udj',0

dl
U

l=0
G . sB6d

We eliminatedj',0/dlul=0 from Eq. sB6d using Eq.sA8d of
Appendix A and obtain

Udji,0

dl
U

l=0
=

j0

d
R8s0d. sB7d

We finally insert Eqs.sB5d and sB7d into Eq. sB1d and, by
rearranging the terms, we obtain for the Casimir force

bFCasimir= fR8s0dg−1 lim
Li→`

bJ8s1d
Li

d−1L'

3Ko
R
Fo

k=1

d−1

SRSR+ek
− sd − 1dSRSR+edGL

+
1

dn
fbcs0d − bg

uex

L'

; kt''l, sB8d

where Eq.s2.9d has also been used. Note that the first term in
Eq. sB8d is generated by the anisotropy variation whereas the
second term originates from a change in length scales en-
forced by the coordinate transformation given by Eq.s2.7d.

In order to express Eq.(B8) as the thermal averagekt''l
of the normal component of the stress tensor we note that

uex/L' = u − ub, sB9d

whereu is the volume energy density of the slab andub the
volume energy density in the bulk. Naturally,u and ub are

thermal averages of properly normalized HamiltoniansĤ
andĤb. More specifically,Ĥ is the Hamiltonian of the finite

system normalized per unit volume, whileĤb is the corre-
sponding Hamiltonian for the bulk systemsi.e., one imagines

an arbitrary finite connected region of spins whose mutual
probability distribution is obtained by taking the thermody-
namic limit while integrating out all spinsoutsidethat fixed
region. This is done for any finite region of the latticed. From
Eqs. sB8d and sB9d the operator form of the stress tensor
given by Eq.s2.11d in the main text can then be read off.

APPENDIX C: THE TWO-DIMENSIONAL ISING
MODEL

As it has been shown in the main text, see Eq.(3.7), in the
critical region of the finite system the stress tensor is given
by

tx,xsi, jd =
1

2Î2
sSi,jSi,j+1 − Si,jSi+1,jd +

1

2
sbc − bdsĤ − Ĥbd.

sC1d

Let us now calculate the variance of the stress tensor
Dtx,xsi , jd, which we will interpret as a variance of a local
measurement of the Casimir force made near the pointsi , jd.
For the leading behavior of the variance nearTc one has

Dtx,xsi, jd = 1
2kSi,j

2 sSi,j+1 − Si+1,jd2l − ktx,xsi, jdl2

= 1 − kSi,j+1Si+1,jl − ktx,xsi, jdl2. sC2d

Obviously, it holds thatkSi,j+1Si+1,jl=kS0,1S1,0l=kS0,0S1,1l,
because of the symmetry of the Ising model on a square
lattice under periodic boundary conditions. The correlations
kS0,0S1,1l are well known for the bulk systemf15g.

(i) For T,Tc,

kS0,0S1,1l =
2

p
ES1

u
D . sC3d

(ii ) For T.Tc,

kS0,0S1,1l =
2

pu
fEsud + su2 − 1dK sudg, sC4d

where, according to Eq.s2.4d,

u = sinhs2bJxdsinhs2bJyd. sC5d

(iii ) For T=Tc, which is given byu=1, it follows that
kS0,0S1,1l=2/p.

In the above expressionsK andE are the complete ellip-
tic integrals of first and of second kind, respectively. From
them and Eq.(C2) one easily obtains expressions for the
behavior of the varianceDtx,xsi , jd of the stress tensor below,
above, and atTc. At T=Tc, for example, one has that

Dtx,xsi, jd . 1 − 2/p. sC6d

Definitely, in addition from the above nonuniversal part the
variance contains also universal parts that are negligible in
comparison with the nonuniversal one.

An estimation can be also derived forDoi,j tx,xsi , jd. With
a variance of such a type one deals when, say, Monte Carlo
simulations of the force are performed. According to Eqs.
(2.14) and (2.15), at T=Tc,
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Do
i,j

t̃x,xsi, jd =
]2

] l2fln o e−bHsldg = ML
]2

] l2f− b f̃sTc,ldg,

sC7d

and, therefore, from Eq.s3.7d it follows that

Do
i,j

tx,xsi, jd =
1

2 ln2s1 +Î2d
ML

]2

] l2f− b f̃sTc,ldg.

sC8d

It is clear that the leading-order behavior of the variance will
stem from the bulk contribution to the free energy—the
finite-size terms will produce only corrections to it. The bulk
free energy of the anisotropic two-dimensional Ising model
is well known ssee, e.g., Ref.f15gd

− bf = ln 2 +
1

2
E

−p

p du1

2p
E

−p

p du2

2p
lnfcoshs2bJxdcoshs2bJyd

− sinhs2bJxdcossu1d− sinhs2bJydcossu2dg. sC9d

Setting hereJx=s1+ldJ and Jx=s1−ldJ, we immediately

obtain −b f̃sbJ,ld, and from Eq.sC8d one then derivessat
T=Tcd that

Do
i,j

tx,xsi, jd =
1

23−
1

2
+

1

p2E
−p

p

du1E
−p

p

du2

3

sin2Su1

2
Dsin2Su2

2
D

S1 −
cossu1d + cossu2d

2
D24

=
1

2
F−

1

2
+

2

p
GML . 0.068ML. sC10d

We again observe that the variance of the sum oftx,xsi , jd is
proportional to the total number of summands in this sum.
This is the result given in Eq.s3.11d in the main text.

APPENDIX D: THE SPHERICAL MODEL

Using the identity

lns1 + zd =E
0

` dx

x
s1 − e−zxde−x, sD1d

the equation for the free energys3.17d becomes

bfsK,Nd =
1

2
Fln

K

2p
− KG + sup

w.0
HUsw,Nd −

1

2
KwJ ,

sD2d

where

Usw,Nd =
1

2N
o

kPBL

lnFw + 1 −
Ĵskd

Ĵs0d
G

=
1

2
E

0

` dx

x Se−x − e−xw1

N o
kPBL

e−xf1−Ĵskd/Ĵs0dgD .

sD3d

The supremum is attained at the value ofw that is a solution
of the sspherical fieldd equation

1

N
o

kPBL

E
0

`

e−xwe−xf1−Ĵskd/Ĵs0dgdx= K. sD4d

For nearest-neighbor interactions the Fourier transform of
the interaction reads

Ĵskd = 2o
j=1

d

Jj cosskjajd. sD5d

Then, for the spherical field equation and the sumUsw,Nd,
we obtain

E
0

`

e−xwFp
j=1

d
1

Nj
o
kj

e−xbjs1−coskjajdG = K, sD6d

Usw,Nd =
1

2
E

0

` dx

x
Se−x − e−xwFp

j=1

d
1

Nj
o
kj

e−xbjs1−coskjajdGD ,

sD7d

wherebj =Jj /o j=1
d Jj. Using the identityf27g

o
n=0

N−1

expFx cos
2pn

N
G = N o

q=−`

`

IqNsxd, sD8d

EquationssD6d and sD7d can be written in the form

E
0

`

e−xwp
j=1

d Fe−xbj o
qj=−`

`

IqjNj
sbjxdGdx= K sD9d

and

Usw,Nd =
1

2
E

0

` dx

x
Se−x − e−xwp

j=1

d Fe−xbj o
qj=−`

`

IqjNj
sbjxdGD .

sD10d

In analogical way one can consider the behavior of the
bulk system. Then, in the limitNj →`, j =1, . . . ,d, one ob-
tains the bulk equation for the spherical field

CRITICAL CASIMIR FORCE AND ITS FLUCTUATIONS… PHYSICAL REVIEW E 69, 046119(2004)

046119-15



K =E
0

`

e−xwp
j=1

d

fe−xbjI0sbjxdgdx

=
1

s2pddE
0

2p

dn1 ¯ E
0

2p

dnd
1

w + o
j=1

d

bjs1 − cosnjd

,

sD11d

and the following contribution into the free energy:

Ubswd =
1

2
E

0

` dx

x
Se−x − e−xwp

j=1

d

fe−xbjI0sbjxdgD
=

1

2

1

s2pddE
0

2p

dn1 ¯ E
0

2p

dnd

3 lnFw + o
j=1

d

bjs1 − cosnjdG . sD12d

In a similar way, starting from Eq.(3.18), one can show
that the bulk two-point correlation function in such an aniso-
tropic system is

Gsr ,td =
1

wbĴs0d
E

0

`

dr e−rp
j=1

d

expSr
bj

w
D

3
1

2p
E

0

2p

expFinjl j + r
bj

w
cosnjG . sD13d

Supposing thatl j @1, j =1, . . . ,d, from Eq.sD13d one obtain

Gsr ,td .
1

wbĴs0d
E

0

`

dr e−rp
j=1

d expF−
w

2rbj
l j
2G

Îrbj/w
,

sD14d

wherefrom one concludes that the correlation lengthj j in
direction j is

j j = Î2bj/w sD15d

with the critical point of the system given byw=0 fnote that
in the spherical model, because of the so-called equation of
the spherical field, Eq.sD11d, w depends on the couplingK,
dimensionalityd, and on the anisotropy described by the
constantsbj, j =1, . . . ,dg. Therefore, one has

j j

ji
=Îbj

bi
=ÎJj

Ji
. sD16d

TakingJj, j =1, . . . ,j in the form prescribed by Eq.s2.2d one
obtains

d

dl
US ji,0

j',0
DU

l=0
=

d

2

J8s1d
Js1d

, sD17d

and, thus, making use of Eq.s2.11d, we derive the explicit
form of the stress tensor within the spherical model

t''sRd =
bJ

d/2Fo
k=1

d−1

SRSR+ek
− sd − 1dSRSR+edG

+
1

dn
sbc − bdsĤ − Ĥbd, sD18d

whereĤ is the Hamiltoniansnormalized per unit particled of

the finite system andĤb of the infinite system.

1. Evaluation of the finite-size excess free energy
of the anisotropic system

From Eqs.(D10) and (D12) one has

Usw,Nd = Ubswd + DUsw,Nd, sD19d

where

DUsw,Nd = −
1

2 o
qÞ0

E
0

` dx

x
e−xwp

j=1

d

e−xbjIqjNj
sxbjd.

sD20d

Next, with the help of the expansionf27g

Insxd =
expsx − n2/2xd

Î2px
S1 +

1

8x
+

9 − 32n2

2 ! s8xd2 + ¯D ,

sD21d

DUsw,Nd can be cast in the form

DUsw,Nd = −
1

2 o
qÞ0

E
0

` dx

x
e−xwp

j=1

d
e−Nj

2qj
2/2xbj

Î2pxbj

, sD22d

wherefrom, in the limit of a film geometryN1,N2, . . . ,Nd−1
→`, with Nd=N', one obtains

DUsw,N'd = −
2

s2pdd/2Sb'

bi
Dsd−1d/2

yd/4o
q=1

`
Kd/2sqÎyd

qd/2 N'
−d.

sD23d

Here we have takenJ1=J2=¯Jd−1=Ji and Jd=J', which
corresponds tob1=b2=¯bd−1=bi and bd=b', whereasy
=2wN'

2 /b'.
All what remains now is to deal with the behavior of the

bulk term Ubswd when K is close toKc, i.e., whenw!1.
This analysis is well known for the isotropic case, here we
will, very briefly, extend it to cover the anisotropic case also.
Starting from Eq.(D12), one obtains

Ubswd = Ubs0d +
1

2
E

0

w

dv Wdsvubd, sD24d

where

Ubs0d =
1

2
E

0

` dx

x Fe−x − p
j=1

d

e−xbjI0sxbjdG sD25d

is a temperature independent constant and
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Wdsvubd =E
0

`

dxe−xvp
j=1

d

e−xbjI0sxbjd sD26d

is the generalized Watson-type integralsthe standard one is
with bj =b for all j =1, . . . ,dd. Using the standard technique
for evaluation of such type of integralsssee, e.g., Ref.f7gd
one derives that, for 2,d,4,

Wdsvubd . Wds0ubd, sD27d

wherefrom it follows that, again for 2,d,4,

Ubswd . Ubs0d +
1

2
wWds0ubd −

1

2

Gs− d/2d

s2pdd/2p
j=1

d

Îbj

vd/2.

sD28d

Taking into account that in terms of the “anisotropic” Wat-
son integral the equation of the spherical field simply is

K = Wdswubd, sD29d

and that, according to Eq.sD15d, the critical point is fixed by
w=0, we conclude that the critical coupling of the aniso-
tropic system is

Kc ; 2bco
j=1

d

Jj = Wds0ubd =E
0

`

dxp
j=1

d

e−xbjI0sxbjd.

sD30d

Then, close toK=Kc, for the free energy density of bulk
system from Eqs.sD2d, sD28d, ands3.23d one obtains

bfbsKubd =
1

2
Fln

K

2p
− KG +

1

2
wbsKc − Kd + Ubs0d

−
1

2

Gs− d/2d

s2pdd/2p
j=1

d

Îbj

vd/2, sD31d

where, forKøKc, the parameterwb is the solution of the
equation

K = Kc +
Gs1 − d/2d

s2pdd/2p
j=1

d

Îbj

vb
d/2−1, sD32d

whereas forK.Kc the supremum of the free energy is at-
tained atwb=0. Similarly, for the free energy density of the
finite system from Eqs.sD2d, sD22d, sD28d, and s3.23d we
obtain

bfsK,Nubd =
1

2
Fln

K

2p
− KG +

1

2
wsKc − Kd + Ubs0d

−
1

2

Gs− d/2d

s2pdd/2p
j=1

d

Îbj

vd/2

−
1

2 o
qÞ0

E
0

` dx

x
e−xwp

j=1

d
e−Nj

2qj
2/2xbj

Î2pxbj

, sD33d

where w is the solution of the finite-size equation for the
spherical field

K = Kc +
Gs1 − d/2d

s2pdd/2p
j=1

d

Îbj

vd/2−1

+ o
qÞ0

E
0

`

dx e−xwp
j=1

d
e−Nj

2qj
2/2xbj

Î2pxbj

. sD34d

Recalling that, for 2,d,4, the spherical model has a criti-
cal exponentn=1/sd−2d one can, in the limit of a film ge-
ometry N1,N2, . . . ,Nd−1→`, from Eqs. sD23d, sD31d, and
sD33d, obtain an expression for theexcessfree energybsf
− fbd sper spind,

bF fsK,N'ubd − fbsKubdg =H1

4
x1sy − y`d

−
1

2

Gs− d/2d
s4pdd/2 Sb'

bi
Dsd−1d/2

syd/2 − y`
d/2d

−
2

s2pdd/2Sb'

bi
Dsd−1d/2

yd/4o
q=1

`
Kd/2sqÎyd

qd/2 JN'
−d

sD35d

in a scaling form. In the above equation

x1 = b'sKc − KdN'
1/n, n =

1

d − 2
sD36d

is the temperature scaling variable,y`=2wbN'
2 /b' is the so-

lution of the bulk spherical field equation

−
1

2
x1 =

Gs1 − d/2d
s4pdd/2 Sb'

bi
Dsd−1d/2

y`
d/2−1, sD37d

while y=2wN'
2 /b' is the solution of the finite-size spherical

field equation

−
1

2
x1 =

Gs1 − d/2d
s4pdd/2 Sb'

bi
Dsd−1d/2

yd/2−1

+
2

s2pdd/2Sb'

bi
Dsd−1d/2

yd/4−1/2o
q=1

`
Kd/2−1sqÎyd

qd/2−1 .

sD38d

For the Casimir forcefsee also Eq.s1.1dg
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bFCasimir= −
]

] N'

fN'bsf − fbdg sD39d

from Eqs.s3.24d, s3.26d, ands3.27d one obtains

bFCasimir= N'
−dH1

4
x1sy − y`d− sd − 1d

3Sb'

bi
Dsd−1d/2F1

2

Gs− d/2d
s4pdd/2 syd/2 − y`

d/2d

+
2

s2pdd/2yd/4o
q=1

`
Kd/2sqÎyd

qd/2 GJ . sD40d

We are ready now to determine the Casimir amplitudesD in
the spherical model. Having in mind Eq.s1.4d, at K=Kc
stheny`=0d, for the isotropic systemsthenb'=bi=1/d d one
obtains from Eq.s3.28d,

D = −F1

2

Gs− d/2d
s4pdd/2 yc

d/2 +
2

s2pdd/2yc
d/4o

q=1

`
Kd/2sqÎycd

qd/2 G ,

sD41d

where

Gs− d/2d
s4pdd/2 yc

d/2 =
4

ds2pdd/2yc
d/4+1/2o

q=1

`
Kd/2−1sqÎycd

qd/2−1 .

sD42d

Using now thatssee, e.g., Ref.f19gd

Kn+1szd = Kn−1szd +
2n

z
Knszd, sD43d

from Eqs.sD41d and sD42d we derive

D = −
2

ds2pdd/2yc
d/4+1/2o

q=1

`
Kd/2+1sqÎycd

qd/2−1 , sD44d

with bcFCasimirsKc,L'd=sd−1dDL'
−d. The exact value ofyc

and D in an explicit form is only known ford=3. Then

y = 4 ln2fs1 +Î5d/2g sD45d

sthis value is well known and seems that has been derived for
the first time in Ref.f18g and f19g

D = −
2zs3d
5p

. sD46d

This is the only exactly known Casimir amplitude for a
three-dimensional system. In Ref.f21g it has been shown
fsee there Eq.s27dg that this value can also be written in the
form

D = −
1

2p
FLi3se−Îycd + Îyc Li2se−Îycd +

1

6
yc

3/2G ,

sD47d

where Lipszd=ok=1
` zk/kp is the polylogarithm function of

order p. Taking into account thatKs5/2,xd=Îp /2xs1
+2/x+3/x2dexps−xd f20g and Eq. s3.30d, one can easily
check that the right-hand side of Eq.s3.29d can indeed be
written in the form given in Eq.sD47d.

2. Evaluation of the average value of the stress tensor

Taking into account Eq.(2.16), for the difference of the

finite size and bulk internal energy densitiesu=kĤl andub

=kĤbl, one can easily derive from Eq.(D2),

u − ub = −
1

2
Jsw − wbd = −

1

4d
Jsy − y`dN'

−2, sD48d

wherey=2dwN'
2 , and then from Eq.s3.18d or Eq. sD2d, to

obtain for the stress tensors3.22d that

kt''sRdl =
d − 1

d

1

N o
kPBL

cossk1a1d − cosskdadd

ds1 + wd − o
j=1

d

cosskjajd

−
d − 2

4d
x1sy − y`dN'

−d, sD49d

where, we recall,x1=d−1sKc−KdN'
d−2 fsee Eq.s3.25dg. Using

the identityfsee Eq.sD8dg

o
n=0

N−1

cosS2pn

N
DexpFx cosS2pn

N
DG = N o

q=−`

`

IqN8 sxd,

sD50d

whereIn8sxd=sd/dxdInsxd, in the limit of a film geometry, i.e.,
whenN1,N2, . . . ,Nd−1→`, the above expression can be re-
written in the form

kt''sRdl =
2sd − 1d

d
o
q=1

` E
0

`

dx e−dw xfe−xI0sxdgd−2

3e−2xfI08sxdIqNsxd − I0sxdIqN8 sxdg

− N'
−dsd − 2d

4d
x1sy − y`d. sD51d

It is worth mentioning that till now no approximation in the
calculation of the average of the stress tensor operator has
been made. In order to obtain the scaling form of the above
expression such a step will be performed only now. Indeed,
with the help of the expansionsD21d,

Insxd =
expsx − n2/2xd

Î2px
S1 +

1

8x
+

9 − 32n2

2 ! s8xd2 + ¯D ,

sD52d

one can set the above expression in scaling form

D. DANTCHEV AND M. KRECH PHYSICAL REVIEW E69, 046119(2004)

046119-18



kt''sRdl = −
2sd − 1d
ds2pdd/2ysd+2d/4o

q=1

`
K1+d/2sqÎyd

qd/2−1 N'
−d

− N'
−dsd − 2d

4d
x1sy − y`d. sD53d

Now it only remains to show that the right-hand side of the
above equation is indeed equal to the right-hand side of Eq.
s3.28d sfor b'=bid, which gives the Casimir force calculated
in a direct manner as a derivative of the finite-size free en-
ergy with respect to the size of the system. In order to dem-
onstrate that, let us first, with the help of identitysD43d,
rewrite the above expression for the stress tensor in the form

kt''sRdl = −H2sd − 1d
s2pdd/2 Fyd/4o

q=1

`
Kd/2sqÎyd

qd/2

+
1

d
ysd+2d/4o

q=1

`
Kd/2−1sqÎyd

qd/2−1 G
+

sd − 2d
4d

x1sy − y`dJN'
−d. sD54d

Next, from the bulks3.26d and finite-size equationss3.27d of
the spherical field one directly derives

−
1

4
x1y` =

Gs1 − d/2d
2s4pdd/2 y`

d/2 sD55d

and

−
1

4
x1y =

Gs1 − d/2d
2s4pdd/2 yd/2+

1

s2pdd/2ysd+2d/4o
q=1

`
Kd/2−1sqÎyd

qd/2−1 ,

sD56d

wherefrom

1

s2pdd/2ysd+2d/4o
q=1

`
Kd/2−1sqÎyd

qd/2−1

= −
1

4
x1sy − y`d−

Gs1 − d/2d
2s4pdd/2 syd/2 − y`

d/2d. sD57d

Inserting now Eq.sD57d in Eq. s3.32d we conclude that,
indeed,

kt''sRdl = bFCasimir sD58d

for the spherical model.

c. Evaluation of the variance of the stress tensor

If Dz is the variance of the random variablez, i.e., Dz
=ksz−kzld2l=kz2l−kzl2, then atT=Tc,

D o
RPL

t̃','sRd =
]2

] l2fln o e−bHsldg

=N'Ni
d−1 ]2

] l2f− b f̃sTc,ldg sD59d

ffor the definition of Hsldg and f̃sT,ld see Eqs.
s2.13d–s2.15d. Comparing now Eqs.s2.15d and s3.22d, we
conclude that, atT=Tc, in the case of a spherical model

D o
RPL

t','sRd =
4

d2N'Ni
d−1 ]2

] l2f− b f̃sTc,ldg. sD60d

The finite-size free energy density of the anisotropic system
is given in Eq.sD33d, where the anisotropy is characterized
by the constants

b1 = b2 = ¯ = bd−1 = bi =
Ji

sd − 1dJi + J'

=
1 + l

d

sD61d

and

bd = b' =
J'

sd − 1dJi + J'

=
1

d
−

d − 1

d
l. sD62d

Let us now first note that

K = bĴs0d = 2bfsd − 1dJi + J'g = 2bJd sD63d

does not depend onl and that

] bi

] l
=

1

d
,

] b'

] l
= −

d − 1

d
. sD64d

It is clear from Eqs.sD33d and s3.24d that the contributions
to the variance of the stress tensor stemming from the “finite-
size” and the singular “bulk” parts will be of the order of
sN'Ni

d−1d /N'
d , while that one from the bulk regular part will

be of the order ofN'Ni
d−1. Because of that the leading con-

tributions will be nonuniversal. In addition to them one will
have also universal corrections, but we will neglect them in
the current treatment and will deal only with the leading-
order behavior of the variance of the Casimir force. Then,
from Eq. sD33d, one has

D o
RPL

t','sRd ,
4

d2N'Ni
d−1 ]2

] l2f− Ubs0ubdg, sD65d

whereUbs0ubd;Ubs0d is defined in Eq.sD25d. Having in
mind Eq.sD64d, it is easy to show that

]

] l
Ubs0ubd =

d − 1

d
S ]

] bi

Ubs0ubd −
]

] b'

Ubs0ubdD ,

sD66d

wherefrom one immediately derives
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]2

] l2Ubs0ubd =
d − 1

d
S ]2

] bi
2Ubs0ubd −

]2

] b' ] bi

Ubs0ubdD .

sD67d

Performing now the calculations, from Eqs.sD25d and
sD67d, we obtain

]2

] l2Ubs0ubd =
1

2
dsd − 1dE

0

`

dx xe−dxI0
d−2sxd

3HI1
2sxd −

1

2
I0sxdfI0sxd + I2sxdgJ ,

sD68d

which leads to the following result:

D o
RPL

t','sRd . −
2sd − 1d

d
N'Ni

d−1E
0

`

dx xI0
d−2sxd

3HI1
2sxd −

1

2
I0sxdfI0sxd + I2sxdgJe−dx,

sD69d

for the variance of the Casimir force in the spherical model
at T=Tc. This will be also the leading result everywhere in
the critical region. A numerical evaluation of Eq.sD69d
gives

Dt',' ; D o
RPL

t','sRd . 0.107N'Ni
2. sD70d
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